clincalcii / icd9_ui.py
adithiyyha's picture
Update icd9_ui.py
e1eca6d verified
raw
history blame
33.5 kB
import streamlit as st
import torch
from transformers import LongformerTokenizer, LongformerForSequenceClassification
# Load the fine-tuned model and tokenizer
model_path = "./clinical_longformer"
tokenizer = LongformerTokenizer.from_pretrained(model_path)
model = LongformerForSequenceClassification.from_pretrained(model_path)
model.eval() # Set the model to evaluation mode
# ICD-9 code columns used during training
icd9_columns = [
'038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
'287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
'39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
'486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
'88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
'995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
]
# Function for making predictions
def predict_icd9(texts, tokenizer, model, threshold=0.5):
inputs = tokenizer(
texts,
padding="max_length",
truncation=True,
max_length=512,
return_tensors="pt"
)
with torch.no_grad():
outputs = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"]
)
logits = outputs.logits
probabilities = torch.sigmoid(logits)
predictions = (probabilities > threshold).int()
predicted_icd9 = []
for pred in predictions:
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
predicted_icd9.append(codes)
return predicted_icd9
# Streamlit UI
st.title("ICD-9 Code Prediction")
st.sidebar.header("Model Options")
model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"])
threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
st.write("### Enter Medical Summary")
input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
if st.button("Predict"):
if input_text.strip():
predictions = predict_icd9([input_text], tokenizer, model, threshold)
st.write("### Predicted ICD-9 Codes")
for code in predictions[0]:
st.write(f"- {code}")
else:
st.error("Please enter a medical summary.")
# import torch
# import pandas as pd
# import streamlit as st
# from transformers import LongformerTokenizer, LongformerForSequenceClassification
# # Load the fine-tuned model and tokenizer
# model_path = "./clinical_longformer"
# tokenizer = LongformerTokenizer.from_pretrained(model_path)
# model = LongformerForSequenceClassification.from_pretrained(model_path)
# model.eval() # Set the model to evaluation mode
# # Load the ICD-9 descriptions from CSV into a dictionary
# icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
# icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
# icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
# # ICD-9 code columns used during training
# icd9_columns = [
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# ]
# # Function for making predictions
# def predict_icd9(texts, tokenizer, model, threshold=0.5):
# inputs = tokenizer(
# texts,
# padding="max_length",
# truncation=True,
# max_length=512,
# return_tensors="pt"
# )
# with torch.no_grad():
# outputs = model(
# input_ids=inputs["input_ids"],
# attention_mask=inputs["attention_mask"]
# )
# logits = outputs.logits
# probabilities = torch.sigmoid(logits)
# predictions = (probabilities > threshold).int()
# predicted_icd9 = []
# for pred in predictions:
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# predicted_icd9.append(codes)
# # Fetch descriptions for the predicted ICD-9 codes from the pre-loaded descriptions
# predictions_with_desc = []
# for codes in predicted_icd9:
# code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
# predictions_with_desc.append(code_with_desc)
# return predictions_with_desc
# st.title("ICD-9 Code Prediction")
# st.sidebar.header("Model Options")
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# st.write("### Enter Medical Summary")
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# if st.button("Predict"):
# if input_text.strip():
# predictions = predict_icd9([input_text], tokenizer, model, threshold)
# st.write("### Predicted ICD-9 Codes and Descriptions")
# for code, description in predictions[0]:
# st.write(f"- {code}: {description}")
# else:
# st.error("Please enter a medical summary.")
# import torch
# # # # import pandas as pd
# # # # import streamlit as st
# # # # from transformers import LongformerTokenizer, LongformerForSequenceClassification
# # # # Load the fine-tuned model and tokenizer
# # # model_path = "./clinical_longformer"
# # # tokenizer = LongformerTokenizer.from_pretrained(model_path)
# # # model = LongformerForSequenceClassification.from_pretrained(model_path)
# # # model.eval() # Set the model to evaluation mode
# # # # Load the ICD-9 descriptions from CSV into a dictionary
# # # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
# # # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type
# # # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals for matching
# # # # Load the ICD-9 to ICD-10 mapping
# # # icd9_to_icd10 = {}
# # # with open("2015_I9gem.txt", "r") as file:
# # # for line in file:
# # # parts = line.strip().split()
# # # if len(parts) == 3:
# # # icd9, icd10, _ = parts
# # # icd9_to_icd10[icd9] = icd10
# # # # ICD-9 code columns used during training
# # # icd9_columns = [
# # # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# # # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# # # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# # # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# # # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# # # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# # # ]
# # # # Function for making predictions and mapping to ICD-10
# # # def predict_icd9(texts, tokenizer, model, threshold=0.5):
# # # inputs = tokenizer(
# # # texts,
# # # padding="max_length",
# # # truncation=True,
# # # max_length=512,
# # # return_tensors="pt"
# # # )
# # # with torch.no_grad():
# # # outputs = model(
# # # input_ids=inputs["input_ids"],
# # # attention_mask=inputs["attention_mask"]
# # # )
# # # logits = outputs.logits
# # # probabilities = torch.sigmoid(logits)
# # # predictions = (probabilities > threshold).int()
# # # predicted_icd9 = []
# # # for pred in predictions:
# # # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# # # predicted_icd9.append(codes)
# # # # Fetch descriptions and map to ICD-10 codes
# # # predictions_with_desc = []
# # # for codes in predicted_icd9:
# # # code_with_desc = []
# # # for code in codes:
# # # icd9_stripped = code.replace('.', '')
# # # icd10_code = icd9_to_icd10.get(icd9_stripped, "Mapping not found")
# # # icd9_desc = icd9_descriptions.get(icd9_stripped, "Description not found")
# # # code_with_desc.append((code, icd9_desc, icd10_code))
# # # predictions_with_desc.append(code_with_desc)
# # # return predictions_with_desc
# # # # Streamlit UI
# # # st.title("ICD-9 to ICD-10 Code Prediction")
# # # st.sidebar.header("Model Options")
# # # threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# # # st.write("### Enter Medical Summary")
# # # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# # # if st.button("Predict"):
# # # if input_text.strip():
# # # predictions = predict_icd9([input_text], tokenizer, model, threshold)
# # # st.write("### Predicted ICD-9 and ICD-10 Codes with Descriptions")
# # # for icd9_code, description, icd10_code in predictions[0]:
# # # st.write(f"- ICD-9: {icd9_code} ({description}) -> ICD-10: {icd10_code}")
# # # else:
# # # st.error("Please enter a medical summary.")
# # # import os
# # # import torch
# # # import pandas as pd
# # # import streamlit as st
# # # from PIL import Image
# # # from transformers import LongformerTokenizer, LongformerForSequenceClassification
# # # from phi.agent import Agent
# # # from phi.model.google import Gemini
# # # from phi.tools.duckduckgo import DuckDuckGo
# # # # Load the fine-tuned ICD-9 model and tokenizer
# # # model_path = "./clinical_longformer"
# # # tokenizer = LongformerTokenizer.from_pretrained(model_path)
# # # model = LongformerForSequenceClassification.from_pretrained(model_path)
# # # model.eval() # Set the model to evaluation mode
# # # # Load the ICD-9 descriptions from CSV into a dictionary
# # # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
# # # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
# # # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
# # # # ICD-9 code columns used during training
# # # icd9_columns = [
# # # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# # # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# # # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# # # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# # # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# # # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# # # ]
# # # # Function for making ICD-9 predictions
# # # def predict_icd9(texts, tokenizer, model, threshold=0.5):
# # # inputs = tokenizer(
# # # texts,
# # # padding="max_length",
# # # truncation=True,
# # # max_length=512,
# # # return_tensors="pt"
# # # )
# # # with torch.no_grad():
# # # outputs = model(
# # # input_ids=inputs["input_ids"],
# # # attention_mask=inputs["attention_mask"]
# # # )
# # # logits = outputs.logits
# # # probabilities = torch.sigmoid(logits)
# # # predictions = (probabilities > threshold).int()
# # # predicted_icd9 = []
# # # for pred in predictions:
# # # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# # # predicted_icd9.append(codes)
# # # predictions_with_desc = []
# # # for codes in predicted_icd9:
# # # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
# # # predictions_with_desc.append(code_with_desc)
# # # return predictions_with_desc
# # # Streamlit UI
# # # st.title("Medical Diagnosis Assistant")
# # # option = st.selectbox(
# # # "Choose Diagnosis Method",
# # # ("ICD-9 Code Prediction", "Medical Image Analysis")
# # # )
# # # # ICD-9 Code Prediction
# # # if option == "ICD-9 Code Prediction":
# # # st.write("### Enter Medical Summary")
# # # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# # # threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# # # if st.button("Predict ICD-9 Codes"):
# # # if input_text.strip():
# # # predictions = predict_icd9([input_text], tokenizer, model, threshold)
# # # st.write("### Predicted ICD-9 Codes and Descriptions")
# # # for code, description in predictions[0]:
# # # st.write(f"- {code}: {description}")
# # # else:
# # # st.error("Please enter a medical summary.")
# # # Medical Image Analysis
# # # elif option == "Medical Image Analysis":
# # # if "GOOGLE_API_KEY" not in st.session_state:
# # # st.warning("Please enter your Google API Key in the sidebar to continue")
# # # else:
# # # medical_agent = Agent(
# # # model=Gemini(
# # # api_key=st.session_state.GOOGLE_API_KEY,
# # # id="gemini-2.0-flash-exp"
# # # ),
# # # tools=[DuckDuckGo()],
# # # markdown=True
# # # )
# # # query = """
# # # You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
# # # ### 1. Image Type & Region
# # # - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
# # # - Identify the patient's anatomical region and positioning
# # # - Comment on image quality and technical adequacy
# # # ### 2. Key Findings
# # # - List primary observations systematically
# # # - Note any abnormalities in the patient's imaging with precise descriptions
# # # - Include measurements and densities where relevant
# # # - Describe location, size, shape, and characteristics
# # # - Rate severity: Normal/Mild/Moderate/Severe
# # # ### 3. Diagnostic Assessment
# # # - Provide primary diagnosis with confidence level
# # # - List differential diagnoses in order of likelihood
# # # - Support each diagnosis with observed evidence from the patient's imaging
# # # - Note any critical or urgent findings
# # # ### 4. Patient-Friendly Explanation
# # # - Explain the findings in simple, clear language that the patient can understand
# # # - Avoid medical jargon or provide clear definitions
# # # - Include visual analogies if helpful
# # # - Address common patient concerns related to these findings
# # # ### 5. Research Context
# # # - Use the DuckDuckGo search tool to find recent medical literature about similar cases
# # # - Provide a list of relevant medical links
# # # - Include key references to support your analysis
# # # """
# # # upload_container = st.container()
# # # image_container = st.container()
# # # analysis_container = st.container()
# # # with upload_container:
# # # uploaded_file = st.file_uploader(
# # # "Upload Medical Image",
# # # type=["jpg", "jpeg", "png", "dicom"],
# # # help="Supported formats: JPG, JPEG, PNG, DICOM"
# # # )
# # # if uploaded_file is not None:
# # # with image_container:
# # # col1, col2, col3 = st.columns([1, 2, 1])
# # # with col2:
# # # image = Image.open(uploaded_file)
# # # width, height = image.size
# # # aspect_ratio = width / height
# # # new_width = 500
# # # new_height = int(new_width / aspect_ratio)
# # # resized_image = image.resize((new_width, new_height))
# # # st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
# # # analyze_button = st.button("πŸ” Analyze Image")
# # # with analysis_container:
# # # if analyze_button:
# # # image_path = "temp_medical_image.png"
# # # with open(image_path, "wb") as f:
# # # f.write(uploaded_file.getbuffer())
# # # with st.spinner("πŸ”„ Analyzing image... Please wait."):
# # # try:
# # # response = medical_agent.run(query, images=[image_path])
# # # st.markdown("### πŸ“‹ Analysis Results")
# # # st.markdown(response.content)
# # # except Exception as e:
# # # st.error(f"Analysis error: {e}")
# # # finally:
# # # if os.path.exists(image_path):
# # # os.remove(image_path)
# # # else:
# # # st.info("πŸ‘† Please upload a medical image to begin analysis")
# # import os
# # import torch
# # import pandas as pd
# # import streamlit as st
# # from PIL import Image
# # from transformers import LongformerTokenizer, LongformerForSequenceClassification
# # from phi.agent import Agent
# # from phi.model.google import Gemini
# # from phi.tools.duckduckgo import DuckDuckGo
# # # Sidebar for Google API Key input
# # st.sidebar.title("Settings")
# # st.sidebar.write("Enter your Google API Key below for the Medical Image Analysis feature.")
# # api_key = st.sidebar.text_input("Google API Key", type="password")
# # if api_key:
# # st.session_state["GOOGLE_API_KEY"] = api_key
# # else:
# # st.session_state.pop("GOOGLE_API_KEY", None)
# # # Load the fine-tuned ICD-9 model and tokenizer
# # model_path = "./clinical_longformer"
# # tokenizer = LongformerTokenizer.from_pretrained(model_path)
# # model = LongformerForSequenceClassification.from_pretrained(model_path)
# # model.eval() # Set the model to evaluation mode
# # # Load the ICD-9 descriptions from CSV into a dictionary
# # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
# # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
# # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
# # # ICD-9 code columns used during training
# # icd9_columns = [
# # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# # ]
# # # Function for making ICD-9 predictions
# # def predict_icd9(texts, tokenizer, model, threshold=0.5):
# # inputs = tokenizer(
# # texts,
# # padding="max_length",
# # truncation=True,
# # max_length=512,
# # return_tensors="pt"
# # )
# # with torch.no_grad():
# # outputs = model(
# # input_ids=inputs["input_ids"],
# # attention_mask=inputs["attention_mask"]
# # )
# # logits = outputs.logits
# # probabilities = torch.sigmoid(logits)
# # predictions = (probabilities > threshold).int()
# # predicted_icd9 = []
# # for pred in predictions:
# # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# # predicted_icd9.append(codes)
# # predictions_with_desc = []
# # for codes in predicted_icd9:
# # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
# # predictions_with_desc.append(code_with_desc)
# # return predictions_with_desc
# # # Streamlit UI
# # st.title("Medical Diagnosis Assistant")
# # option = st.selectbox(
# # "Choose Diagnosis Method",
# # ("ICD-9 Code Prediction", "Medical Image Analysis")
# # )
# # # ICD-9 Code Prediction
# # if option == "ICD-9 Code Prediction":
# # st.write("### Enter Medical Summary")
# # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# # threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# # if st.button("Predict ICD-9 Codes"):
# # if input_text.strip():
# # predictions = predict_icd9([input_text], tokenizer, model, threshold)
# # st.write("### Predicted ICD-9 Codes and Descriptions")
# # for code, description in predictions[0]:
# # st.write(f"- {code}: {description}")
# # else:
# # st.error("Please enter a medical summary.")
# # # Medical Image Analysis
# # elif option == "Medical Image Analysis":
# # if "GOOGLE_API_KEY" not in st.session_state:
# # st.warning("Please enter your Google API Key in the sidebar to continue")
# # else:
# # medical_agent = Agent(
# # model=Gemini(
# # api_key=st.session_state["GOOGLE_API_KEY"],
# # id="gemini-2.0-flash-exp"
# # ),
# # tools=[DuckDuckGo()],
# # markdown=True
# # )
# # query = """
# # You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
# # ### 1. Image Type & Region
# # - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
# # - Identify the patient's anatomical region and positioning
# # - Comment on image quality and technical adequacy
# # ### 2. Key Findings
# # - List primary observations systematically
# # - Note any abnormalities in the patient's imaging with precise descriptions
# # - Include measurements and densities where relevant
# # - Describe location, size, shape, and characteristics
# # - Rate severity: Normal/Mild/Moderate/Severe
# # ### 3. Diagnostic Assessment
# # - Provide primary diagnosis with confidence level
# # - List differential diagnoses in order of likelihood
# # - Support each diagnosis with observed evidence from the patient's imaging
# # - Note any critical or urgent findings
# # ### 4. Patient-Friendly Explanation
# # - Explain the findings in simple, clear language that the patient can understand
# # - Avoid medical jargon or provide clear definitions
# # - Include visual analogies if helpful
# # - Address common patient concerns related to these findings
# # ### 5. Research Context
# # - Use the DuckDuckGo search tool to find recent medical literature about similar cases
# # - Provide a list of relevant medical links
# # - Include key references to support your analysis
# # """
# # upload_container = st.container()
# # image_container = st.container()
# # analysis_container = st.container()
# # with upload_container:
# # uploaded_file = st.file_uploader(
# # "Upload Medical Image",
# # type=["jpg", "jpeg", "png", "dicom"],
# # help="Supported formats: JPG, JPEG, PNG, DICOM"
# # )
# # if uploaded_file is not None:
# # with image_container:
# # col1, col2, col3 = st.columns([1, 2, 1])
# # with col2:
# # image = Image.open(uploaded_file)
# # width, height = image.size
# # aspect_ratio = width / height
# # new_width = 500
# # new_height = int(new_width / aspect_ratio)
# # resized_image = image.resize((new_width, new_height))
# # st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
# # analyze_button = st.button("πŸ” Analyze Image")
# # with analysis_container:
# # if analyze_button:
# # image_path = "temp_medical_image.png"
# # with open(image_path, "wb") as f:
# # f.write(uploaded_file.getbuffer())
# # with st.spinner("πŸ”„ Analyzing image... Please wait."):
# # try:
# # response = medical_agent.run(query, images=[image_path])
# # st.markdown("### πŸ“‹ Analysis Results")
# # st.markdown(response.content)
# # except Exception as e:
# # st.error(f"Analysis error: {e}")
# # finally:
# # if os.path.exists(image_path):
# # os.remove(image_path)
# # else:
# # st.info("πŸ‘† Please upload a medical image to begin analysis")
# import os
# import torch
# import pandas as pd
# import streamlit as st
# from PIL import Image
# from transformers import LongformerTokenizer, LongformerForSequenceClassification
# from phi.agent import Agent
# from phi.model.google import Gemini
# from phi.tools.duckduckgo import DuckDuckGo
# # Load the fine-tuned ICD-9 model and tokenizer
# model_path = "./clinical_longformer"
# tokenizer = LongformerTokenizer.from_pretrained(model_path)
# model = LongformerForSequenceClassification.from_pretrained(model_path)
# model.eval() # Set the model to evaluation mode
# # Load the ICD-9 descriptions from CSV into a dictionary
# icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv")
# icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
# icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
# # ICD-9 code columns used during training
# icd9_columns = [
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# ]
# # Function for making ICD-9 predictions
# def predict_icd9(texts, tokenizer, model, threshold=0.5):
# inputs = tokenizer(
# texts,
# padding="max_length",
# truncation=True,
# max_length=512,
# return_tensors="pt"
# )
# with torch.no_grad():
# outputs = model(
# input_ids=inputs["input_ids"],
# attention_mask=inputs["attention_mask"]
# )
# logits = outputs.logits
# probabilities = torch.sigmoid(logits)
# predictions = (probabilities > threshold).int()
# predicted_icd9 = []
# for pred in predictions:
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# predicted_icd9.append(codes)
# predictions_with_desc = []
# for codes in predicted_icd9:
# code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
# predictions_with_desc.append(code_with_desc)
# return predictions_with_desc
# # Define the API key directly in the code
# GOOGLE_API_KEY = "AIzaSyA24A6egT3L0NAKkkw9QHjfoizp7cJUTaA"
# # Streamlit UI
# st.title("Medical Diagnosis Assistant")
# option = st.selectbox(
# "Choose Diagnosis Method",
# ("ICD-9 Code Prediction", "Medical Image Analysis")
# )
# # ICD-9 Code Prediction
# if option == "ICD-9 Code Prediction":
# st.write("### Enter Medical Summary")
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# if st.button("Predict ICD-9 Codes"):
# if input_text.strip():
# predictions = predict_icd9([input_text], tokenizer, model, threshold)
# st.write("### Predicted ICD-9 Codes and Descriptions")
# for code, description in predictions[0]:
# st.write(f"- {code}: {description}")
# else:
# st.error("Please enter a medical summary.")
# # Medical Image Analysis
# elif option == "Medical Image Analysis":
# medical_agent = Agent(
# model=Gemini(
# api_key=GOOGLE_API_KEY,
# id="gemini-2.0-flash-exp"
# ),
# tools=[DuckDuckGo()],
# markdown=True
# )
# query = """
# You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
# ### 1. Image Type & Region
# - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
# - Identify the patient's anatomical region and positioning
# - Comment on image quality and technical adequacy
# ### 2. Key Findings
# - List primary observations systematically
# - Note any abnormalities in the patient's imaging with precise descriptions
# - Include measurements and densities where relevant
# - Describe location, size, shape, and characteristics
# - Rate severity: Normal/Mild/Moderate/Severe
# ### 3. Diagnostic Assessment
# - Provide primary diagnosis with confidence level
# - List differential diagnoses in order of likelihood
# - Support each diagnosis with observed evidence from the patient's imaging
# - Note any critical or urgent findings
# ### 4. Patient-Friendly Explanation
# - Explain the findings in simple, clear language that the patient can understand
# - Avoid medical jargon or provide clear definitions
# - Include visual analogies if helpful
# - Address common patient concerns related to these findings
# ### 5. Research Context
# - Use the DuckDuckGo search tool to find recent medical literature about similar cases
# - Provide a list of relevant medical links
# - Include key references to support your analysis
# """
# upload_container = st.container()
# image_container = st.container()
# analysis_container = st.container()
# with upload_container:
# uploaded_file = st.file_uploader(
# "Upload Medical Image",
# type=["jpg", "jpeg", "png", "dicom"],
# help="Supported formats: JPG, JPEG, PNG, DICOM"
# )
# if uploaded_file is not None:
# with image_container:
# col1, col2, col3 = st.columns([1, 2, 1])
# with col2:
# image = Image.open(uploaded_file)
# width, height = image.size
# aspect_ratio = width / height
# new_width = 500
# new_height = int(new_width / aspect_ratio)
# resized_image = image.resize((new_width, new_height))
# st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
# analyze_button = st.button("πŸ” Analyze Image")
# with analysis_container:
# if analyze_button:
# image_path = "temp_medical_image.png"
# with open(image_path, "wb") as f:
# f.write(uploaded_file.getbuffer())
# with st.spinner("πŸ”„ Analyzing image... Please wait."):
# try:
# response = medical_agent.run(query, images=[image_path])
# st.markdown("### πŸ“‹ Analysis Results")
# st.markdown(response.content)
# except Exception as e:
# st.error(f"Analysis error: {e}")
# finally:
# if os.path.exists(image_path):
# os.remove(image_path)
# else:
# st.info("πŸ‘† Please upload a medical image to begin analysis")