adithiyyha commited on
Commit
171239b
Β·
verified Β·
1 Parent(s): e7b6c4d

Update icd9_ui.py

Browse files
Files changed (1) hide show
  1. icd9_ui.py +190 -7
icd9_ui.py CHANGED
@@ -225,7 +225,184 @@
225
  # else:
226
  # st.error("Please enter a medical summary.")
227
 
228
- import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229
  import torch
230
  import pandas as pd
231
  import streamlit as st
@@ -235,6 +412,16 @@ from phi.agent import Agent
235
  from phi.model.google import Gemini
236
  from phi.tools.duckduckgo import DuckDuckGo
237
 
 
 
 
 
 
 
 
 
 
 
238
  # Load the fine-tuned ICD-9 model and tokenizer
239
  model_path = "./clinical_longformer"
240
  tokenizer = LongformerTokenizer.from_pretrained(model_path)
@@ -317,7 +504,7 @@ elif option == "Medical Image Analysis":
317
  else:
318
  medical_agent = Agent(
319
  model=Gemini(
320
- api_key=st.session_state.GOOGLE_API_KEY,
321
  id="gemini-2.0-flash-exp"
322
  ),
323
  tools=[DuckDuckGo()],
@@ -326,31 +513,26 @@ elif option == "Medical Image Analysis":
326
 
327
  query = """
328
  You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
329
-
330
  ### 1. Image Type & Region
331
  - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
332
  - Identify the patient's anatomical region and positioning
333
  - Comment on image quality and technical adequacy
334
-
335
  ### 2. Key Findings
336
  - List primary observations systematically
337
  - Note any abnormalities in the patient's imaging with precise descriptions
338
  - Include measurements and densities where relevant
339
  - Describe location, size, shape, and characteristics
340
  - Rate severity: Normal/Mild/Moderate/Severe
341
-
342
  ### 3. Diagnostic Assessment
343
  - Provide primary diagnosis with confidence level
344
  - List differential diagnoses in order of likelihood
345
  - Support each diagnosis with observed evidence from the patient's imaging
346
  - Note any critical or urgent findings
347
-
348
  ### 4. Patient-Friendly Explanation
349
  - Explain the findings in simple, clear language that the patient can understand
350
  - Avoid medical jargon or provide clear definitions
351
  - Include visual analogies if helpful
352
  - Address common patient concerns related to these findings
353
-
354
  ### 5. Research Context
355
  - Use the DuckDuckGo search tool to find recent medical literature about similar cases
356
  - Provide a list of relevant medical links
@@ -403,3 +585,4 @@ elif option == "Medical Image Analysis":
403
  st.info("πŸ‘† Please upload a medical image to begin analysis")
404
 
405
 
 
 
225
  # else:
226
  # st.error("Please enter a medical summary.")
227
 
228
+ # import os
229
+ # import torch
230
+ # import pandas as pd
231
+ # import streamlit as st
232
+ # from PIL import Image
233
+ # from transformers import LongformerTokenizer, LongformerForSequenceClassification
234
+ # from phi.agent import Agent
235
+ # from phi.model.google import Gemini
236
+ # from phi.tools.duckduckgo import DuckDuckGo
237
+
238
+ # # Load the fine-tuned ICD-9 model and tokenizer
239
+ # model_path = "./clinical_longformer"
240
+ # tokenizer = LongformerTokenizer.from_pretrained(model_path)
241
+ # model = LongformerForSequenceClassification.from_pretrained(model_path)
242
+ # model.eval() # Set the model to evaluation mode
243
+
244
+ # # Load the ICD-9 descriptions from CSV into a dictionary
245
+ # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
246
+ # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
247
+ # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
248
+
249
+ # # ICD-9 code columns used during training
250
+ # icd9_columns = [
251
+ # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
252
+ # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
253
+ # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
254
+ # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
255
+ # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
256
+ # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
257
+ # ]
258
+
259
+ # # Function for making ICD-9 predictions
260
+ # def predict_icd9(texts, tokenizer, model, threshold=0.5):
261
+ # inputs = tokenizer(
262
+ # texts,
263
+ # padding="max_length",
264
+ # truncation=True,
265
+ # max_length=512,
266
+ # return_tensors="pt"
267
+ # )
268
+
269
+ # with torch.no_grad():
270
+ # outputs = model(
271
+ # input_ids=inputs["input_ids"],
272
+ # attention_mask=inputs["attention_mask"]
273
+ # )
274
+ # logits = outputs.logits
275
+ # probabilities = torch.sigmoid(logits)
276
+ # predictions = (probabilities > threshold).int()
277
+
278
+ # predicted_icd9 = []
279
+ # for pred in predictions:
280
+ # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
281
+ # predicted_icd9.append(codes)
282
+
283
+ # predictions_with_desc = []
284
+ # for codes in predicted_icd9:
285
+ # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
286
+ # predictions_with_desc.append(code_with_desc)
287
+
288
+ # return predictions_with_desc
289
+
290
+ # Streamlit UI
291
+ st.title("Medical Diagnosis Assistant")
292
+ option = st.selectbox(
293
+ "Choose Diagnosis Method",
294
+ ("ICD-9 Code Prediction", "Medical Image Analysis")
295
+ )
296
+
297
+ # ICD-9 Code Prediction
298
+ if option == "ICD-9 Code Prediction":
299
+ st.write("### Enter Medical Summary")
300
+ input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
301
+
302
+ threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
303
+
304
+ if st.button("Predict ICD-9 Codes"):
305
+ if input_text.strip():
306
+ predictions = predict_icd9([input_text], tokenizer, model, threshold)
307
+ st.write("### Predicted ICD-9 Codes and Descriptions")
308
+ for code, description in predictions[0]:
309
+ st.write(f"- {code}: {description}")
310
+ else:
311
+ st.error("Please enter a medical summary.")
312
+
313
+ # Medical Image Analysis
314
+ # elif option == "Medical Image Analysis":
315
+ # if "GOOGLE_API_KEY" not in st.session_state:
316
+ # st.warning("Please enter your Google API Key in the sidebar to continue")
317
+ # else:
318
+ # medical_agent = Agent(
319
+ # model=Gemini(
320
+ # api_key=st.session_state.GOOGLE_API_KEY,
321
+ # id="gemini-2.0-flash-exp"
322
+ # ),
323
+ # tools=[DuckDuckGo()],
324
+ # markdown=True
325
+ # )
326
+
327
+ # query = """
328
+ # You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
329
+
330
+ # ### 1. Image Type & Region
331
+ # - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
332
+ # - Identify the patient's anatomical region and positioning
333
+ # - Comment on image quality and technical adequacy
334
+
335
+ # ### 2. Key Findings
336
+ # - List primary observations systematically
337
+ # - Note any abnormalities in the patient's imaging with precise descriptions
338
+ # - Include measurements and densities where relevant
339
+ # - Describe location, size, shape, and characteristics
340
+ # - Rate severity: Normal/Mild/Moderate/Severe
341
+
342
+ # ### 3. Diagnostic Assessment
343
+ # - Provide primary diagnosis with confidence level
344
+ # - List differential diagnoses in order of likelihood
345
+ # - Support each diagnosis with observed evidence from the patient's imaging
346
+ # - Note any critical or urgent findings
347
+
348
+ # ### 4. Patient-Friendly Explanation
349
+ # - Explain the findings in simple, clear language that the patient can understand
350
+ # - Avoid medical jargon or provide clear definitions
351
+ # - Include visual analogies if helpful
352
+ # - Address common patient concerns related to these findings
353
+
354
+ # ### 5. Research Context
355
+ # - Use the DuckDuckGo search tool to find recent medical literature about similar cases
356
+ # - Provide a list of relevant medical links
357
+ # - Include key references to support your analysis
358
+ # """
359
+
360
+ # upload_container = st.container()
361
+ # image_container = st.container()
362
+ # analysis_container = st.container()
363
+
364
+ # with upload_container:
365
+ # uploaded_file = st.file_uploader(
366
+ # "Upload Medical Image",
367
+ # type=["jpg", "jpeg", "png", "dicom"],
368
+ # help="Supported formats: JPG, JPEG, PNG, DICOM"
369
+ # )
370
+
371
+ # if uploaded_file is not None:
372
+ # with image_container:
373
+ # col1, col2, col3 = st.columns([1, 2, 1])
374
+ # with col2:
375
+ # image = Image.open(uploaded_file)
376
+ # width, height = image.size
377
+ # aspect_ratio = width / height
378
+ # new_width = 500
379
+ # new_height = int(new_width / aspect_ratio)
380
+ # resized_image = image.resize((new_width, new_height))
381
+
382
+ # st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
383
+
384
+ # analyze_button = st.button("πŸ” Analyze Image")
385
+
386
+ # with analysis_container:
387
+ # if analyze_button:
388
+ # image_path = "temp_medical_image.png"
389
+ # with open(image_path, "wb") as f:
390
+ # f.write(uploaded_file.getbuffer())
391
+
392
+ # with st.spinner("πŸ”„ Analyzing image... Please wait."):
393
+ # try:
394
+ # response = medical_agent.run(query, images=[image_path])
395
+ # st.markdown("### πŸ“‹ Analysis Results")
396
+ # st.markdown(response.content)
397
+ # except Exception as e:
398
+ # st.error(f"Analysis error: {e}")
399
+ # finally:
400
+ # if os.path.exists(image_path):
401
+ # os.remove(image_path)
402
+ # else:
403
+ # st.info("πŸ‘† Please upload a medical image to begin analysis")
404
+
405
+ import os
406
  import torch
407
  import pandas as pd
408
  import streamlit as st
 
412
  from phi.model.google import Gemini
413
  from phi.tools.duckduckgo import DuckDuckGo
414
 
415
+ # Sidebar for Google API Key input
416
+ st.sidebar.title("Settings")
417
+ st.sidebar.write("Enter your Google API Key below for the Medical Image Analysis feature.")
418
+ api_key = st.sidebar.text_input("Google API Key", type="password")
419
+
420
+ if api_key:
421
+ st.session_state["GOOGLE_API_KEY"] = api_key
422
+ else:
423
+ st.session_state.pop("GOOGLE_API_KEY", None)
424
+
425
  # Load the fine-tuned ICD-9 model and tokenizer
426
  model_path = "./clinical_longformer"
427
  tokenizer = LongformerTokenizer.from_pretrained(model_path)
 
504
  else:
505
  medical_agent = Agent(
506
  model=Gemini(
507
+ api_key=st.session_state["GOOGLE_API_KEY"],
508
  id="gemini-2.0-flash-exp"
509
  ),
510
  tools=[DuckDuckGo()],
 
513
 
514
  query = """
515
  You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
 
516
  ### 1. Image Type & Region
517
  - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
518
  - Identify the patient's anatomical region and positioning
519
  - Comment on image quality and technical adequacy
 
520
  ### 2. Key Findings
521
  - List primary observations systematically
522
  - Note any abnormalities in the patient's imaging with precise descriptions
523
  - Include measurements and densities where relevant
524
  - Describe location, size, shape, and characteristics
525
  - Rate severity: Normal/Mild/Moderate/Severe
 
526
  ### 3. Diagnostic Assessment
527
  - Provide primary diagnosis with confidence level
528
  - List differential diagnoses in order of likelihood
529
  - Support each diagnosis with observed evidence from the patient's imaging
530
  - Note any critical or urgent findings
 
531
  ### 4. Patient-Friendly Explanation
532
  - Explain the findings in simple, clear language that the patient can understand
533
  - Avoid medical jargon or provide clear definitions
534
  - Include visual analogies if helpful
535
  - Address common patient concerns related to these findings
 
536
  ### 5. Research Context
537
  - Use the DuckDuckGo search tool to find recent medical literature about similar cases
538
  - Provide a list of relevant medical links
 
585
  st.info("πŸ‘† Please upload a medical image to begin analysis")
586
 
587
 
588
+