adithiyyha commited on
Commit
3d1a0d5
Β·
verified Β·
1 Parent(s): 26923aa

Update icd9_ui.py

Browse files
Files changed (1) hide show
  1. icd9_ui.py +552 -382
icd9_ui.py CHANGED
@@ -1,73 +1,428 @@
1
- # import streamlit as st
2
- # import torch
3
- # from transformers import LongformerTokenizer, LongformerForSequenceClassification
4
-
5
- # # Load the fine-tuned model and tokenizer
6
- # model_path = "./clinical_longformer"
7
- # tokenizer = LongformerTokenizer.from_pretrained(model_path)
8
- # model = LongformerForSequenceClassification.from_pretrained(model_path)
9
- # model.eval() # Set the model to evaluation mode
10
-
11
- # # ICD-9 code columns used during training
12
- # icd9_columns = [
13
- # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
14
- # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
15
- # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
16
- # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
17
- # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
18
- # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
19
- # ]
20
-
21
- # # Function for making predictions
22
- # def predict_icd9(texts, tokenizer, model, threshold=0.5):
23
- # inputs = tokenizer(
24
- # texts,
25
- # padding="max_length",
26
- # truncation=True,
27
- # max_length=512,
28
- # return_tensors="pt"
29
- # )
30
 
31
- # with torch.no_grad():
32
- # outputs = model(
33
- # input_ids=inputs["input_ids"],
34
- # attention_mask=inputs["attention_mask"]
35
- # )
36
- # logits = outputs.logits
37
- # probabilities = torch.sigmoid(logits)
38
- # predictions = (probabilities > threshold).int()
39
 
40
- # predicted_icd9 = []
41
- # for pred in predictions:
42
- # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
43
- # predicted_icd9.append(codes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- # return predicted_icd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  # # Streamlit UI
48
- # st.title("ICD-9 Code Prediction")
49
- # st.sidebar.header("Model Options")
50
- # model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"])
51
- # threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
52
-
53
- # st.write("### Enter Medical Summary")
54
- # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
55
-
56
- # if st.button("Predict"):
57
- # if input_text.strip():
58
- # predictions = predict_icd9([input_text], tokenizer, model, threshold)
59
- # st.write("### Predicted ICD-9 Codes")
60
- # for code in predictions[0]:
61
- # st.write(f"- {code}")
62
- # else:
63
- # st.error("Please enter a medical summary.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  # import torch
66
  # import pandas as pd
67
  # import streamlit as st
 
68
  # from transformers import LongformerTokenizer, LongformerForSequenceClassification
 
 
 
 
 
 
 
 
69
 
70
- # # Load the fine-tuned model and tokenizer
 
 
 
 
 
71
  # model_path = "./clinical_longformer"
72
  # tokenizer = LongformerTokenizer.from_pretrained(model_path)
73
  # model = LongformerForSequenceClassification.from_pretrained(model_path)
@@ -88,7 +443,7 @@
88
  # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
89
  # ]
90
 
91
- # # Function for making predictions
92
  # def predict_icd9(texts, tokenizer, model, threshold=0.5):
93
  # inputs = tokenizer(
94
  # texts,
@@ -112,7 +467,6 @@
112
  # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
113
  # predicted_icd9.append(codes)
114
 
115
- # # Fetch descriptions for the predicted ICD-9 codes from the pre-loaded descriptions
116
  # predictions_with_desc = []
117
  # for codes in predicted_icd9:
118
  # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
@@ -121,173 +475,6 @@
121
  # return predictions_with_desc
122
 
123
  # # Streamlit UI
124
- # st.title("ICD-9 Code Prediction")
125
- # st.sidebar.header("Model Options")
126
- # threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
127
-
128
- # st.write("### Enter Medical Summary")
129
- # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
130
-
131
- # if st.button("Predict"):
132
- # if input_text.strip():
133
- # predictions = predict_icd9([input_text], tokenizer, model, threshold)
134
- # st.write("### Predicted ICD-9 Codes and Descriptions")
135
- # for code, description in predictions[0]:
136
- # st.write(f"- {code}: {description}")
137
- # else:
138
- # st.error("Please enter a medical summary.")
139
- # import torch
140
- # import pandas as pd
141
- # import streamlit as st
142
- # from transformers import LongformerTokenizer, LongformerForSequenceClassification
143
-
144
- # # Load the fine-tuned model and tokenizer
145
- # model_path = "./clinical_longformer"
146
- # tokenizer = LongformerTokenizer.from_pretrained(model_path)
147
- # model = LongformerForSequenceClassification.from_pretrained(model_path)
148
- # model.eval() # Set the model to evaluation mode
149
-
150
- # # Load the ICD-9 descriptions from CSV into a dictionary
151
- # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
152
- # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type
153
- # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals for matching
154
-
155
- # # Load the ICD-9 to ICD-10 mapping
156
- # icd9_to_icd10 = {}
157
- # with open("2015_I9gem.txt", "r") as file:
158
- # for line in file:
159
- # parts = line.strip().split()
160
- # if len(parts) == 3:
161
- # icd9, icd10, _ = parts
162
- # icd9_to_icd10[icd9] = icd10
163
-
164
- # # ICD-9 code columns used during training
165
- # icd9_columns = [
166
- # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
167
- # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
168
- # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
169
- # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
170
- # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
171
- # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
172
- # ]
173
-
174
- # # Function for making predictions and mapping to ICD-10
175
- # def predict_icd9(texts, tokenizer, model, threshold=0.5):
176
- # inputs = tokenizer(
177
- # texts,
178
- # padding="max_length",
179
- # truncation=True,
180
- # max_length=512,
181
- # return_tensors="pt"
182
- # )
183
-
184
- # with torch.no_grad():
185
- # outputs = model(
186
- # input_ids=inputs["input_ids"],
187
- # attention_mask=inputs["attention_mask"]
188
- # )
189
- # logits = outputs.logits
190
- # probabilities = torch.sigmoid(logits)
191
- # predictions = (probabilities > threshold).int()
192
-
193
- # predicted_icd9 = []
194
- # for pred in predictions:
195
- # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
196
- # predicted_icd9.append(codes)
197
-
198
- # # Fetch descriptions and map to ICD-10 codes
199
- # predictions_with_desc = []
200
- # for codes in predicted_icd9:
201
- # code_with_desc = []
202
- # for code in codes:
203
- # icd9_stripped = code.replace('.', '')
204
- # icd10_code = icd9_to_icd10.get(icd9_stripped, "Mapping not found")
205
- # icd9_desc = icd9_descriptions.get(icd9_stripped, "Description not found")
206
- # code_with_desc.append((code, icd9_desc, icd10_code))
207
- # predictions_with_desc.append(code_with_desc)
208
-
209
- # return predictions_with_desc
210
-
211
- # # Streamlit UI
212
- # st.title("ICD-9 to ICD-10 Code Prediction")
213
- # st.sidebar.header("Model Options")
214
- # threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
215
-
216
- # st.write("### Enter Medical Summary")
217
- # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
218
-
219
- # if st.button("Predict"):
220
- # if input_text.strip():
221
- # predictions = predict_icd9([input_text], tokenizer, model, threshold)
222
- # st.write("### Predicted ICD-9 and ICD-10 Codes with Descriptions")
223
- # for icd9_code, description, icd10_code in predictions[0]:
224
- # st.write(f"- ICD-9: {icd9_code} ({description}) -> ICD-10: {icd10_code}")
225
- # else:
226
- # st.error("Please enter a medical summary.")
227
-
228
- # import os
229
- # import torch
230
- # import pandas as pd
231
- # import streamlit as st
232
- # from PIL import Image
233
- # from transformers import LongformerTokenizer, LongformerForSequenceClassification
234
- # from phi.agent import Agent
235
- # from phi.model.google import Gemini
236
- # from phi.tools.duckduckgo import DuckDuckGo
237
-
238
- # # Load the fine-tuned ICD-9 model and tokenizer
239
- # model_path = "./clinical_longformer"
240
- # tokenizer = LongformerTokenizer.from_pretrained(model_path)
241
- # model = LongformerForSequenceClassification.from_pretrained(model_path)
242
- # model.eval() # Set the model to evaluation mode
243
-
244
- # # Load the ICD-9 descriptions from CSV into a dictionary
245
- # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
246
- # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
247
- # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
248
-
249
- # # ICD-9 code columns used during training
250
- # icd9_columns = [
251
- # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
252
- # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
253
- # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
254
- # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
255
- # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
256
- # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
257
- # ]
258
-
259
- # # Function for making ICD-9 predictions
260
- # def predict_icd9(texts, tokenizer, model, threshold=0.5):
261
- # inputs = tokenizer(
262
- # texts,
263
- # padding="max_length",
264
- # truncation=True,
265
- # max_length=512,
266
- # return_tensors="pt"
267
- # )
268
-
269
- # with torch.no_grad():
270
- # outputs = model(
271
- # input_ids=inputs["input_ids"],
272
- # attention_mask=inputs["attention_mask"]
273
- # )
274
- # logits = outputs.logits
275
- # probabilities = torch.sigmoid(logits)
276
- # predictions = (probabilities > threshold).int()
277
-
278
- # predicted_icd9 = []
279
- # for pred in predictions:
280
- # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
281
- # predicted_icd9.append(codes)
282
-
283
- # predictions_with_desc = []
284
- # for codes in predicted_icd9:
285
- # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
286
- # predictions_with_desc.append(code_with_desc)
287
-
288
- # return predictions_with_desc
289
-
290
- # Streamlit UI
291
  # st.title("Medical Diagnosis Assistant")
292
  # option = st.selectbox(
293
  # "Choose Diagnosis Method",
@@ -310,14 +497,14 @@
310
  # else:
311
  # st.error("Please enter a medical summary.")
312
 
313
- # Medical Image Analysis
314
  # elif option == "Medical Image Analysis":
315
  # if "GOOGLE_API_KEY" not in st.session_state:
316
  # st.warning("Please enter your Google API Key in the sidebar to continue")
317
  # else:
318
  # medical_agent = Agent(
319
  # model=Gemini(
320
- # api_key=st.session_state.GOOGLE_API_KEY,
321
  # id="gemini-2.0-flash-exp"
322
  # ),
323
  # tools=[DuckDuckGo()],
@@ -326,81 +513,76 @@
326
 
327
  # query = """
328
  # You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
329
-
330
  # ### 1. Image Type & Region
331
  # - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
332
  # - Identify the patient's anatomical region and positioning
333
  # - Comment on image quality and technical adequacy
334
-
335
  # ### 2. Key Findings
336
  # - List primary observations systematically
337
  # - Note any abnormalities in the patient's imaging with precise descriptions
338
  # - Include measurements and densities where relevant
339
  # - Describe location, size, shape, and characteristics
340
  # - Rate severity: Normal/Mild/Moderate/Severe
341
-
342
  # ### 3. Diagnostic Assessment
343
  # - Provide primary diagnosis with confidence level
344
  # - List differential diagnoses in order of likelihood
345
  # - Support each diagnosis with observed evidence from the patient's imaging
346
- # - Note any critical or urgent findings
347
-
348
- # ### 4. Patient-Friendly Explanation
349
- # - Explain the findings in simple, clear language that the patient can understand
350
- # - Avoid medical jargon or provide clear definitions
351
- # - Include visual analogies if helpful
352
- # - Address common patient concerns related to these findings
353
-
354
- # ### 5. Research Context
355
- # - Use the DuckDuckGo search tool to find recent medical literature about similar cases
356
- # - Provide a list of relevant medical links
357
- # - Include key references to support your analysis
358
- # """
359
-
360
- # upload_container = st.container()
361
- # image_container = st.container()
362
- # analysis_container = st.container()
363
-
364
- # with upload_container:
365
- # uploaded_file = st.file_uploader(
366
- # "Upload Medical Image",
367
- # type=["jpg", "jpeg", "png", "dicom"],
368
- # help="Supported formats: JPG, JPEG, PNG, DICOM"
369
- # )
370
-
371
- # if uploaded_file is not None:
372
- # with image_container:
373
- # col1, col2, col3 = st.columns([1, 2, 1])
374
- # with col2:
375
- # image = Image.open(uploaded_file)
376
- # width, height = image.size
377
- # aspect_ratio = width / height
378
- # new_width = 500
379
- # new_height = int(new_width / aspect_ratio)
380
- # resized_image = image.resize((new_width, new_height))
381
 
382
- # st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
383
 
384
- # analyze_button = st.button("πŸ” Analyze Image")
385
 
386
- # with analysis_container:
387
- # if analyze_button:
388
- # image_path = "temp_medical_image.png"
389
- # with open(image_path, "wb") as f:
390
- # f.write(uploaded_file.getbuffer())
391
 
392
- # with st.spinner("πŸ”„ Analyzing image... Please wait."):
393
- # try:
394
- # response = medical_agent.run(query, images=[image_path])
395
- # st.markdown("### πŸ“‹ Analysis Results")
396
- # st.markdown(response.content)
397
- # except Exception as e:
398
- # st.error(f"Analysis error: {e}")
399
- # finally:
400
- # if os.path.exists(image_path):
401
- # os.remove(image_path)
402
- # else:
403
- # st.info("πŸ‘† Please upload a medical image to begin analysis")
404
 
405
  import os
406
  import torch
@@ -412,16 +594,6 @@ from phi.agent import Agent
412
  from phi.model.google import Gemini
413
  from phi.tools.duckduckgo import DuckDuckGo
414
 
415
- # Sidebar for Google API Key input
416
- st.sidebar.title("Settings")
417
- st.sidebar.write("Enter your Google API Key below for the Medical Image Analysis feature.")
418
- api_key = st.sidebar.text_input("Google API Key", type="password")
419
-
420
- if api_key:
421
- st.session_state["GOOGLE_API_KEY"] = api_key
422
- else:
423
- st.session_state.pop("GOOGLE_API_KEY", None)
424
-
425
  # Load the fine-tuned ICD-9 model and tokenizer
426
  model_path = "./clinical_longformer"
427
  tokenizer = LongformerTokenizer.from_pretrained(model_path)
@@ -429,7 +601,7 @@ model = LongformerForSequenceClassification.from_pretrained(model_path)
429
  model.eval() # Set the model to evaluation mode
430
 
431
  # Load the ICD-9 descriptions from CSV into a dictionary
432
- icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
433
  icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
434
  icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
435
 
@@ -452,7 +624,6 @@ def predict_icd9(texts, tokenizer, model, threshold=0.5):
452
  max_length=512,
453
  return_tensors="pt"
454
  )
455
-
456
  with torch.no_grad():
457
  outputs = model(
458
  input_ids=inputs["input_ids"],
@@ -474,6 +645,9 @@ def predict_icd9(texts, tokenizer, model, threshold=0.5):
474
 
475
  return predictions_with_desc
476
 
 
 
 
477
  # Streamlit UI
478
  st.title("Medical Diagnosis Assistant")
479
  option = st.selectbox(
@@ -499,90 +673,86 @@ if option == "ICD-9 Code Prediction":
499
 
500
  # Medical Image Analysis
501
  elif option == "Medical Image Analysis":
502
- if "GOOGLE_API_KEY" not in st.session_state:
503
- st.warning("Please enter your Google API Key in the sidebar to continue")
504
- else:
505
- medical_agent = Agent(
506
- model=Gemini(
507
- api_key=st.session_state["GOOGLE_API_KEY"],
508
- id="gemini-2.0-flash-exp"
509
- ),
510
- tools=[DuckDuckGo()],
511
- markdown=True
512
- )
513
-
514
- query = """
515
- You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
516
- ### 1. Image Type & Region
517
- - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
518
- - Identify the patient's anatomical region and positioning
519
- - Comment on image quality and technical adequacy
520
- ### 2. Key Findings
521
- - List primary observations systematically
522
- - Note any abnormalities in the patient's imaging with precise descriptions
523
- - Include measurements and densities where relevant
524
- - Describe location, size, shape, and characteristics
525
- - Rate severity: Normal/Mild/Moderate/Severe
526
- ### 3. Diagnostic Assessment
527
- - Provide primary diagnosis with confidence level
528
- - List differential diagnoses in order of likelihood
529
- - Support each diagnosis with observed evidence from the patient's imaging
530
- - Note any critical or urgent findings
531
- ### 4. Patient-Friendly Explanation
532
- - Explain the findings in simple, clear language that the patient can understand
533
- - Avoid medical jargon or provide clear definitions
534
- - Include visual analogies if helpful
535
- - Address common patient concerns related to these findings
536
- ### 5. Research Context
537
- - Use the DuckDuckGo search tool to find recent medical literature about similar cases
538
- - Provide a list of relevant medical links
539
- - Include key references to support your analysis
540
- """
541
-
542
- upload_container = st.container()
543
- image_container = st.container()
544
- analysis_container = st.container()
545
-
546
- with upload_container:
547
- uploaded_file = st.file_uploader(
548
- "Upload Medical Image",
549
- type=["jpg", "jpeg", "png", "dicom"],
550
- help="Supported formats: JPG, JPEG, PNG, DICOM"
551
- )
552
-
553
- if uploaded_file is not None:
554
- with image_container:
555
- col1, col2, col3 = st.columns([1, 2, 1])
556
- with col2:
557
- image = Image.open(uploaded_file)
558
- width, height = image.size
559
- aspect_ratio = width / height
560
- new_width = 500
561
- new_height = int(new_width / aspect_ratio)
562
- resized_image = image.resize((new_width, new_height))
563
-
564
- st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
565
-
566
- analyze_button = st.button("πŸ” Analyze Image")
567
 
568
- with analysis_container:
569
- if analyze_button:
570
- image_path = "temp_medical_image.png"
571
- with open(image_path, "wb") as f:
572
- f.write(uploaded_file.getbuffer())
573
-
574
- with st.spinner("πŸ”„ Analyzing image... Please wait."):
575
- try:
576
- response = medical_agent.run(query, images=[image_path])
577
- st.markdown("### πŸ“‹ Analysis Results")
578
- st.markdown(response.content)
579
- except Exception as e:
580
- st.error(f"Analysis error: {e}")
581
- finally:
582
- if os.path.exists(image_path):
583
- os.remove(image_path)
584
- else:
585
- st.info("πŸ‘† Please upload a medical image to begin analysis")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587
 
588
 
 
1
+ # # import streamlit as st
2
+ # # import torch
3
+ # # from transformers import LongformerTokenizer, LongformerForSequenceClassification
4
+
5
+ # # # Load the fine-tuned model and tokenizer
6
+ # # model_path = "./clinical_longformer"
7
+ # # tokenizer = LongformerTokenizer.from_pretrained(model_path)
8
+ # # model = LongformerForSequenceClassification.from_pretrained(model_path)
9
+ # # model.eval() # Set the model to evaluation mode
10
+
11
+ # # # ICD-9 code columns used during training
12
+ # # icd9_columns = [
13
+ # # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
14
+ # # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
15
+ # # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
16
+ # # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
17
+ # # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
18
+ # # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
19
+ # # ]
20
+
21
+ # # # Function for making predictions
22
+ # # def predict_icd9(texts, tokenizer, model, threshold=0.5):
23
+ # # inputs = tokenizer(
24
+ # # texts,
25
+ # # padding="max_length",
26
+ # # truncation=True,
27
+ # # max_length=512,
28
+ # # return_tensors="pt"
29
+ # # )
30
 
31
+ # # with torch.no_grad():
32
+ # # outputs = model(
33
+ # # input_ids=inputs["input_ids"],
34
+ # # attention_mask=inputs["attention_mask"]
35
+ # # )
36
+ # # logits = outputs.logits
37
+ # # probabilities = torch.sigmoid(logits)
38
+ # # predictions = (probabilities > threshold).int()
39
 
40
+ # # predicted_icd9 = []
41
+ # # for pred in predictions:
42
+ # # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
43
+ # # predicted_icd9.append(codes)
44
+
45
+ # # return predicted_icd9
46
+
47
+ # # # Streamlit UI
48
+ # # st.title("ICD-9 Code Prediction")
49
+ # # st.sidebar.header("Model Options")
50
+ # # model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"])
51
+ # # threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
52
+
53
+ # # st.write("### Enter Medical Summary")
54
+ # # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
55
+
56
+ # # if st.button("Predict"):
57
+ # # if input_text.strip():
58
+ # # predictions = predict_icd9([input_text], tokenizer, model, threshold)
59
+ # # st.write("### Predicted ICD-9 Codes")
60
+ # # for code in predictions[0]:
61
+ # # st.write(f"- {code}")
62
+ # # else:
63
+ # # st.error("Please enter a medical summary.")
64
+
65
+ # # import torch
66
+ # # import pandas as pd
67
+ # # import streamlit as st
68
+ # # from transformers import LongformerTokenizer, LongformerForSequenceClassification
69
+
70
+ # # # Load the fine-tuned model and tokenizer
71
+ # # model_path = "./clinical_longformer"
72
+ # # tokenizer = LongformerTokenizer.from_pretrained(model_path)
73
+ # # model = LongformerForSequenceClassification.from_pretrained(model_path)
74
+ # # model.eval() # Set the model to evaluation mode
75
+
76
+ # # # Load the ICD-9 descriptions from CSV into a dictionary
77
+ # # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
78
+ # # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
79
+ # # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
80
+
81
+ # # # ICD-9 code columns used during training
82
+ # # icd9_columns = [
83
+ # # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
84
+ # # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
85
+ # # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
86
+ # # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
87
+ # # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
88
+ # # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
89
+ # # ]
90
+
91
+ # # # Function for making predictions
92
+ # # def predict_icd9(texts, tokenizer, model, threshold=0.5):
93
+ # # inputs = tokenizer(
94
+ # # texts,
95
+ # # padding="max_length",
96
+ # # truncation=True,
97
+ # # max_length=512,
98
+ # # return_tensors="pt"
99
+ # # )
100
+
101
+ # # with torch.no_grad():
102
+ # # outputs = model(
103
+ # # input_ids=inputs["input_ids"],
104
+ # # attention_mask=inputs["attention_mask"]
105
+ # # )
106
+ # # logits = outputs.logits
107
+ # # probabilities = torch.sigmoid(logits)
108
+ # # predictions = (probabilities > threshold).int()
109
+
110
+ # # predicted_icd9 = []
111
+ # # for pred in predictions:
112
+ # # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
113
+ # # predicted_icd9.append(codes)
114
+
115
+ # # # Fetch descriptions for the predicted ICD-9 codes from the pre-loaded descriptions
116
+ # # predictions_with_desc = []
117
+ # # for codes in predicted_icd9:
118
+ # # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
119
+ # # predictions_with_desc.append(code_with_desc)
120
+
121
+ # # return predictions_with_desc
122
+
123
+ # # # Streamlit UI
124
+ # # st.title("ICD-9 Code Prediction")
125
+ # # st.sidebar.header("Model Options")
126
+ # # threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
127
+
128
+ # # st.write("### Enter Medical Summary")
129
+ # # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
130
+
131
+ # # if st.button("Predict"):
132
+ # # if input_text.strip():
133
+ # # predictions = predict_icd9([input_text], tokenizer, model, threshold)
134
+ # # st.write("### Predicted ICD-9 Codes and Descriptions")
135
+ # # for code, description in predictions[0]:
136
+ # # st.write(f"- {code}: {description}")
137
+ # # else:
138
+ # # st.error("Please enter a medical summary.")
139
+ # # import torch
140
+ # # import pandas as pd
141
+ # # import streamlit as st
142
+ # # from transformers import LongformerTokenizer, LongformerForSequenceClassification
143
+
144
+ # # # Load the fine-tuned model and tokenizer
145
+ # # model_path = "./clinical_longformer"
146
+ # # tokenizer = LongformerTokenizer.from_pretrained(model_path)
147
+ # # model = LongformerForSequenceClassification.from_pretrained(model_path)
148
+ # # model.eval() # Set the model to evaluation mode
149
+
150
+ # # # Load the ICD-9 descriptions from CSV into a dictionary
151
+ # # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
152
+ # # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type
153
+ # # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals for matching
154
+
155
+ # # # Load the ICD-9 to ICD-10 mapping
156
+ # # icd9_to_icd10 = {}
157
+ # # with open("2015_I9gem.txt", "r") as file:
158
+ # # for line in file:
159
+ # # parts = line.strip().split()
160
+ # # if len(parts) == 3:
161
+ # # icd9, icd10, _ = parts
162
+ # # icd9_to_icd10[icd9] = icd10
163
+
164
+ # # # ICD-9 code columns used during training
165
+ # # icd9_columns = [
166
+ # # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
167
+ # # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
168
+ # # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
169
+ # # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
170
+ # # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
171
+ # # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
172
+ # # ]
173
+
174
+ # # # Function for making predictions and mapping to ICD-10
175
+ # # def predict_icd9(texts, tokenizer, model, threshold=0.5):
176
+ # # inputs = tokenizer(
177
+ # # texts,
178
+ # # padding="max_length",
179
+ # # truncation=True,
180
+ # # max_length=512,
181
+ # # return_tensors="pt"
182
+ # # )
183
+
184
+ # # with torch.no_grad():
185
+ # # outputs = model(
186
+ # # input_ids=inputs["input_ids"],
187
+ # # attention_mask=inputs["attention_mask"]
188
+ # # )
189
+ # # logits = outputs.logits
190
+ # # probabilities = torch.sigmoid(logits)
191
+ # # predictions = (probabilities > threshold).int()
192
+
193
+ # # predicted_icd9 = []
194
+ # # for pred in predictions:
195
+ # # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
196
+ # # predicted_icd9.append(codes)
197
+
198
+ # # # Fetch descriptions and map to ICD-10 codes
199
+ # # predictions_with_desc = []
200
+ # # for codes in predicted_icd9:
201
+ # # code_with_desc = []
202
+ # # for code in codes:
203
+ # # icd9_stripped = code.replace('.', '')
204
+ # # icd10_code = icd9_to_icd10.get(icd9_stripped, "Mapping not found")
205
+ # # icd9_desc = icd9_descriptions.get(icd9_stripped, "Description not found")
206
+ # # code_with_desc.append((code, icd9_desc, icd10_code))
207
+ # # predictions_with_desc.append(code_with_desc)
208
+
209
+ # # return predictions_with_desc
210
+
211
+ # # # Streamlit UI
212
+ # # st.title("ICD-9 to ICD-10 Code Prediction")
213
+ # # st.sidebar.header("Model Options")
214
+ # # threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
215
+
216
+ # # st.write("### Enter Medical Summary")
217
+ # # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
218
+
219
+ # # if st.button("Predict"):
220
+ # # if input_text.strip():
221
+ # # predictions = predict_icd9([input_text], tokenizer, model, threshold)
222
+ # # st.write("### Predicted ICD-9 and ICD-10 Codes with Descriptions")
223
+ # # for icd9_code, description, icd10_code in predictions[0]:
224
+ # # st.write(f"- ICD-9: {icd9_code} ({description}) -> ICD-10: {icd10_code}")
225
+ # # else:
226
+ # # st.error("Please enter a medical summary.")
227
+
228
+ # # import os
229
+ # # import torch
230
+ # # import pandas as pd
231
+ # # import streamlit as st
232
+ # # from PIL import Image
233
+ # # from transformers import LongformerTokenizer, LongformerForSequenceClassification
234
+ # # from phi.agent import Agent
235
+ # # from phi.model.google import Gemini
236
+ # # from phi.tools.duckduckgo import DuckDuckGo
237
+
238
+ # # # Load the fine-tuned ICD-9 model and tokenizer
239
+ # # model_path = "./clinical_longformer"
240
+ # # tokenizer = LongformerTokenizer.from_pretrained(model_path)
241
+ # # model = LongformerForSequenceClassification.from_pretrained(model_path)
242
+ # # model.eval() # Set the model to evaluation mode
243
+
244
+ # # # Load the ICD-9 descriptions from CSV into a dictionary
245
+ # # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
246
+ # # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
247
+ # # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
248
+
249
+ # # # ICD-9 code columns used during training
250
+ # # icd9_columns = [
251
+ # # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
252
+ # # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
253
+ # # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
254
+ # # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
255
+ # # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
256
+ # # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
257
+ # # ]
258
+
259
+ # # # Function for making ICD-9 predictions
260
+ # # def predict_icd9(texts, tokenizer, model, threshold=0.5):
261
+ # # inputs = tokenizer(
262
+ # # texts,
263
+ # # padding="max_length",
264
+ # # truncation=True,
265
+ # # max_length=512,
266
+ # # return_tensors="pt"
267
+ # # )
268
 
269
+ # # with torch.no_grad():
270
+ # # outputs = model(
271
+ # # input_ids=inputs["input_ids"],
272
+ # # attention_mask=inputs["attention_mask"]
273
+ # # )
274
+ # # logits = outputs.logits
275
+ # # probabilities = torch.sigmoid(logits)
276
+ # # predictions = (probabilities > threshold).int()
277
+
278
+ # # predicted_icd9 = []
279
+ # # for pred in predictions:
280
+ # # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
281
+ # # predicted_icd9.append(codes)
282
+
283
+ # # predictions_with_desc = []
284
+ # # for codes in predicted_icd9:
285
+ # # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
286
+ # # predictions_with_desc.append(code_with_desc)
287
+
288
+ # # return predictions_with_desc
289
 
290
  # # Streamlit UI
291
+ # # st.title("Medical Diagnosis Assistant")
292
+ # # option = st.selectbox(
293
+ # # "Choose Diagnosis Method",
294
+ # # ("ICD-9 Code Prediction", "Medical Image Analysis")
295
+ # # )
296
+
297
+ # # # ICD-9 Code Prediction
298
+ # # if option == "ICD-9 Code Prediction":
299
+ # # st.write("### Enter Medical Summary")
300
+ # # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
301
+
302
+ # # threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
303
+
304
+ # # if st.button("Predict ICD-9 Codes"):
305
+ # # if input_text.strip():
306
+ # # predictions = predict_icd9([input_text], tokenizer, model, threshold)
307
+ # # st.write("### Predicted ICD-9 Codes and Descriptions")
308
+ # # for code, description in predictions[0]:
309
+ # # st.write(f"- {code}: {description}")
310
+ # # else:
311
+ # # st.error("Please enter a medical summary.")
312
+
313
+ # # Medical Image Analysis
314
+ # # elif option == "Medical Image Analysis":
315
+ # # if "GOOGLE_API_KEY" not in st.session_state:
316
+ # # st.warning("Please enter your Google API Key in the sidebar to continue")
317
+ # # else:
318
+ # # medical_agent = Agent(
319
+ # # model=Gemini(
320
+ # # api_key=st.session_state.GOOGLE_API_KEY,
321
+ # # id="gemini-2.0-flash-exp"
322
+ # # ),
323
+ # # tools=[DuckDuckGo()],
324
+ # # markdown=True
325
+ # # )
326
+
327
+ # # query = """
328
+ # # You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
329
+
330
+ # # ### 1. Image Type & Region
331
+ # # - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
332
+ # # - Identify the patient's anatomical region and positioning
333
+ # # - Comment on image quality and technical adequacy
334
+
335
+ # # ### 2. Key Findings
336
+ # # - List primary observations systematically
337
+ # # - Note any abnormalities in the patient's imaging with precise descriptions
338
+ # # - Include measurements and densities where relevant
339
+ # # - Describe location, size, shape, and characteristics
340
+ # # - Rate severity: Normal/Mild/Moderate/Severe
341
+
342
+ # # ### 3. Diagnostic Assessment
343
+ # # - Provide primary diagnosis with confidence level
344
+ # # - List differential diagnoses in order of likelihood
345
+ # # - Support each diagnosis with observed evidence from the patient's imaging
346
+ # # - Note any critical or urgent findings
347
+
348
+ # # ### 4. Patient-Friendly Explanation
349
+ # # - Explain the findings in simple, clear language that the patient can understand
350
+ # # - Avoid medical jargon or provide clear definitions
351
+ # # - Include visual analogies if helpful
352
+ # # - Address common patient concerns related to these findings
353
+
354
+ # # ### 5. Research Context
355
+ # # - Use the DuckDuckGo search tool to find recent medical literature about similar cases
356
+ # # - Provide a list of relevant medical links
357
+ # # - Include key references to support your analysis
358
+ # # """
359
+
360
+ # # upload_container = st.container()
361
+ # # image_container = st.container()
362
+ # # analysis_container = st.container()
363
+
364
+ # # with upload_container:
365
+ # # uploaded_file = st.file_uploader(
366
+ # # "Upload Medical Image",
367
+ # # type=["jpg", "jpeg", "png", "dicom"],
368
+ # # help="Supported formats: JPG, JPEG, PNG, DICOM"
369
+ # # )
370
+
371
+ # # if uploaded_file is not None:
372
+ # # with image_container:
373
+ # # col1, col2, col3 = st.columns([1, 2, 1])
374
+ # # with col2:
375
+ # # image = Image.open(uploaded_file)
376
+ # # width, height = image.size
377
+ # # aspect_ratio = width / height
378
+ # # new_width = 500
379
+ # # new_height = int(new_width / aspect_ratio)
380
+ # # resized_image = image.resize((new_width, new_height))
381
+
382
+ # # st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
383
+
384
+ # # analyze_button = st.button("πŸ” Analyze Image")
385
 
386
+ # # with analysis_container:
387
+ # # if analyze_button:
388
+ # # image_path = "temp_medical_image.png"
389
+ # # with open(image_path, "wb") as f:
390
+ # # f.write(uploaded_file.getbuffer())
391
+
392
+ # # with st.spinner("πŸ”„ Analyzing image... Please wait."):
393
+ # # try:
394
+ # # response = medical_agent.run(query, images=[image_path])
395
+ # # st.markdown("### πŸ“‹ Analysis Results")
396
+ # # st.markdown(response.content)
397
+ # # except Exception as e:
398
+ # # st.error(f"Analysis error: {e}")
399
+ # # finally:
400
+ # # if os.path.exists(image_path):
401
+ # # os.remove(image_path)
402
+ # # else:
403
+ # # st.info("πŸ‘† Please upload a medical image to begin analysis")
404
+
405
+ # import os
406
  # import torch
407
  # import pandas as pd
408
  # import streamlit as st
409
+ # from PIL import Image
410
  # from transformers import LongformerTokenizer, LongformerForSequenceClassification
411
+ # from phi.agent import Agent
412
+ # from phi.model.google import Gemini
413
+ # from phi.tools.duckduckgo import DuckDuckGo
414
+
415
+ # # Sidebar for Google API Key input
416
+ # st.sidebar.title("Settings")
417
+ # st.sidebar.write("Enter your Google API Key below for the Medical Image Analysis feature.")
418
+ # api_key = st.sidebar.text_input("Google API Key", type="password")
419
 
420
+ # if api_key:
421
+ # st.session_state["GOOGLE_API_KEY"] = api_key
422
+ # else:
423
+ # st.session_state.pop("GOOGLE_API_KEY", None)
424
+
425
+ # # Load the fine-tuned ICD-9 model and tokenizer
426
  # model_path = "./clinical_longformer"
427
  # tokenizer = LongformerTokenizer.from_pretrained(model_path)
428
  # model = LongformerForSequenceClassification.from_pretrained(model_path)
 
443
  # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
444
  # ]
445
 
446
+ # # Function for making ICD-9 predictions
447
  # def predict_icd9(texts, tokenizer, model, threshold=0.5):
448
  # inputs = tokenizer(
449
  # texts,
 
467
  # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
468
  # predicted_icd9.append(codes)
469
 
 
470
  # predictions_with_desc = []
471
  # for codes in predicted_icd9:
472
  # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
 
475
  # return predictions_with_desc
476
 
477
  # # Streamlit UI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478
  # st.title("Medical Diagnosis Assistant")
479
  # option = st.selectbox(
480
  # "Choose Diagnosis Method",
 
497
  # else:
498
  # st.error("Please enter a medical summary.")
499
 
500
+ # # Medical Image Analysis
501
  # elif option == "Medical Image Analysis":
502
  # if "GOOGLE_API_KEY" not in st.session_state:
503
  # st.warning("Please enter your Google API Key in the sidebar to continue")
504
  # else:
505
  # medical_agent = Agent(
506
  # model=Gemini(
507
+ # api_key=st.session_state["GOOGLE_API_KEY"],
508
  # id="gemini-2.0-flash-exp"
509
  # ),
510
  # tools=[DuckDuckGo()],
 
513
 
514
  # query = """
515
  # You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
 
516
  # ### 1. Image Type & Region
517
  # - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
518
  # - Identify the patient's anatomical region and positioning
519
  # - Comment on image quality and technical adequacy
 
520
  # ### 2. Key Findings
521
  # - List primary observations systematically
522
  # - Note any abnormalities in the patient's imaging with precise descriptions
523
  # - Include measurements and densities where relevant
524
  # - Describe location, size, shape, and characteristics
525
  # - Rate severity: Normal/Mild/Moderate/Severe
 
526
  # ### 3. Diagnostic Assessment
527
  # - Provide primary diagnosis with confidence level
528
  # - List differential diagnoses in order of likelihood
529
  # - Support each diagnosis with observed evidence from the patient's imaging
530
+ # - Note any critical or urgent findings
531
+ # ### 4. Patient-Friendly Explanation
532
+ # - Explain the findings in simple, clear language that the patient can understand
533
+ # - Avoid medical jargon or provide clear definitions
534
+ # - Include visual analogies if helpful
535
+ # - Address common patient concerns related to these findings
536
+ # ### 5. Research Context
537
+ # - Use the DuckDuckGo search tool to find recent medical literature about similar cases
538
+ # - Provide a list of relevant medical links
539
+ # - Include key references to support your analysis
540
+ # """
541
+
542
+ # upload_container = st.container()
543
+ # image_container = st.container()
544
+ # analysis_container = st.container()
545
+
546
+ # with upload_container:
547
+ # uploaded_file = st.file_uploader(
548
+ # "Upload Medical Image",
549
+ # type=["jpg", "jpeg", "png", "dicom"],
550
+ # help="Supported formats: JPG, JPEG, PNG, DICOM"
551
+ # )
552
+
553
+ # if uploaded_file is not None:
554
+ # with image_container:
555
+ # col1, col2, col3 = st.columns([1, 2, 1])
556
+ # with col2:
557
+ # image = Image.open(uploaded_file)
558
+ # width, height = image.size
559
+ # aspect_ratio = width / height
560
+ # new_width = 500
561
+ # new_height = int(new_width / aspect_ratio)
562
+ # resized_image = image.resize((new_width, new_height))
 
 
563
 
564
+ # st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
565
 
566
+ # analyze_button = st.button("πŸ” Analyze Image")
567
 
568
+ # with analysis_container:
569
+ # if analyze_button:
570
+ # image_path = "temp_medical_image.png"
571
+ # with open(image_path, "wb") as f:
572
+ # f.write(uploaded_file.getbuffer())
573
 
574
+ # with st.spinner("πŸ”„ Analyzing image... Please wait."):
575
+ # try:
576
+ # response = medical_agent.run(query, images=[image_path])
577
+ # st.markdown("### πŸ“‹ Analysis Results")
578
+ # st.markdown(response.content)
579
+ # except Exception as e:
580
+ # st.error(f"Analysis error: {e}")
581
+ # finally:
582
+ # if os.path.exists(image_path):
583
+ # os.remove(image_path)
584
+ # else:
585
+ # st.info("πŸ‘† Please upload a medical image to begin analysis")
586
 
587
  import os
588
  import torch
 
594
  from phi.model.google import Gemini
595
  from phi.tools.duckduckgo import DuckDuckGo
596
 
 
 
 
 
 
 
 
 
 
 
597
  # Load the fine-tuned ICD-9 model and tokenizer
598
  model_path = "./clinical_longformer"
599
  tokenizer = LongformerTokenizer.from_pretrained(model_path)
 
601
  model.eval() # Set the model to evaluation mode
602
 
603
  # Load the ICD-9 descriptions from CSV into a dictionary
604
+ icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv")
605
  icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
606
  icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
607
 
 
624
  max_length=512,
625
  return_tensors="pt"
626
  )
 
627
  with torch.no_grad():
628
  outputs = model(
629
  input_ids=inputs["input_ids"],
 
645
 
646
  return predictions_with_desc
647
 
648
+ # Define the API key directly in the code
649
+ GOOGLE_API_KEY = "AIzaSyA24A6egT3L0NAKkkw9QHjfoizp7cJUTaA"
650
+
651
  # Streamlit UI
652
  st.title("Medical Diagnosis Assistant")
653
  option = st.selectbox(
 
673
 
674
  # Medical Image Analysis
675
  elif option == "Medical Image Analysis":
676
+ medical_agent = Agent(
677
+ model=Gemini(
678
+ api_key=GOOGLE_API_KEY,
679
+ id="gemini-2.0-flash-exp"
680
+ ),
681
+ tools=[DuckDuckGo()],
682
+ markdown=True
683
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684
 
685
+ query = """
686
+ You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
687
+ ### 1. Image Type & Region
688
+ - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
689
+ - Identify the patient's anatomical region and positioning
690
+ - Comment on image quality and technical adequacy
691
+ ### 2. Key Findings
692
+ - List primary observations systematically
693
+ - Note any abnormalities in the patient's imaging with precise descriptions
694
+ - Include measurements and densities where relevant
695
+ - Describe location, size, shape, and characteristics
696
+ - Rate severity: Normal/Mild/Moderate/Severe
697
+ ### 3. Diagnostic Assessment
698
+ - Provide primary diagnosis with confidence level
699
+ - List differential diagnoses in order of likelihood
700
+ - Support each diagnosis with observed evidence from the patient's imaging
701
+ - Note any critical or urgent findings
702
+ ### 4. Patient-Friendly Explanation
703
+ - Explain the findings in simple, clear language that the patient can understand
704
+ - Avoid medical jargon or provide clear definitions
705
+ - Include visual analogies if helpful
706
+ - Address common patient concerns related to these findings
707
+ ### 5. Research Context
708
+ - Use the DuckDuckGo search tool to find recent medical literature about similar cases
709
+ - Provide a list of relevant medical links
710
+ - Include key references to support your analysis
711
+ """
712
+
713
+ upload_container = st.container()
714
+ image_container = st.container()
715
+ analysis_container = st.container()
716
+
717
+ with upload_container:
718
+ uploaded_file = st.file_uploader(
719
+ "Upload Medical Image",
720
+ type=["jpg", "jpeg", "png", "dicom"],
721
+ help="Supported formats: JPG, JPEG, PNG, DICOM"
722
+ )
723
 
724
+ if uploaded_file is not None:
725
+ with image_container:
726
+ col1, col2, col3 = st.columns([1, 2, 1])
727
+ with col2:
728
+ image = Image.open(uploaded_file)
729
+ width, height = image.size
730
+ aspect_ratio = width / height
731
+ new_width = 500
732
+ new_height = int(new_width / aspect_ratio)
733
+ resized_image = image.resize((new_width, new_height))
734
+
735
+ st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
736
+
737
+ analyze_button = st.button("πŸ” Analyze Image")
738
+
739
+ with analysis_container:
740
+ if analyze_button:
741
+ image_path = "temp_medical_image.png"
742
+ with open(image_path, "wb") as f:
743
+ f.write(uploaded_file.getbuffer())
744
+
745
+ with st.spinner("πŸ”„ Analyzing image... Please wait."):
746
+ try:
747
+ response = medical_agent.run(query, images=[image_path])
748
+ st.markdown("### πŸ“‹ Analysis Results")
749
+ st.markdown(response.content)
750
+ except Exception as e:
751
+ st.error(f"Analysis error: {e}")
752
+ finally:
753
+ if os.path.exists(image_path):
754
+ os.remove(image_path)
755
+ else:
756
+ st.info("πŸ‘† Please upload a medical image to begin analysis")
757
 
758