Spaces:
Sleeping
Sleeping
Update icd9_ui.py
Browse files- icd9_ui.py +102 -13
icd9_ui.py
CHANGED
@@ -62,6 +62,80 @@
|
|
62 |
# else:
|
63 |
# st.error("Please enter a medical summary.")
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
import torch
|
66 |
import pandas as pd
|
67 |
import streamlit as st
|
@@ -75,8 +149,17 @@ model.eval() # Set the model to evaluation mode
|
|
75 |
|
76 |
# Load the ICD-9 descriptions from CSV into a dictionary
|
77 |
icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
|
78 |
-
icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type
|
79 |
-
icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
# ICD-9 code columns used during training
|
82 |
icd9_columns = [
|
@@ -88,7 +171,7 @@ icd9_columns = [
|
|
88 |
'995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
|
89 |
]
|
90 |
|
91 |
-
# Function for making predictions
|
92 |
def predict_icd9(texts, tokenizer, model, threshold=0.5):
|
93 |
inputs = tokenizer(
|
94 |
texts,
|
@@ -97,7 +180,7 @@ def predict_icd9(texts, tokenizer, model, threshold=0.5):
|
|
97 |
max_length=512,
|
98 |
return_tensors="pt"
|
99 |
)
|
100 |
-
|
101 |
with torch.no_grad():
|
102 |
outputs = model(
|
103 |
input_ids=inputs["input_ids"],
|
@@ -106,22 +189,27 @@ def predict_icd9(texts, tokenizer, model, threshold=0.5):
|
|
106 |
logits = outputs.logits
|
107 |
probabilities = torch.sigmoid(logits)
|
108 |
predictions = (probabilities > threshold).int()
|
109 |
-
|
110 |
predicted_icd9 = []
|
111 |
for pred in predictions:
|
112 |
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
|
113 |
predicted_icd9.append(codes)
|
114 |
-
|
115 |
-
# Fetch descriptions
|
116 |
predictions_with_desc = []
|
117 |
for codes in predicted_icd9:
|
118 |
-
code_with_desc = [
|
|
|
|
|
|
|
|
|
|
|
119 |
predictions_with_desc.append(code_with_desc)
|
120 |
-
|
121 |
return predictions_with_desc
|
122 |
|
123 |
# Streamlit UI
|
124 |
-
st.title("ICD-9 Code Prediction")
|
125 |
st.sidebar.header("Model Options")
|
126 |
threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
|
127 |
|
@@ -131,9 +219,10 @@ input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes h
|
|
131 |
if st.button("Predict"):
|
132 |
if input_text.strip():
|
133 |
predictions = predict_icd9([input_text], tokenizer, model, threshold)
|
134 |
-
st.write("### Predicted ICD-9 Codes
|
135 |
-
for
|
136 |
-
st.write(f"- {
|
137 |
else:
|
138 |
st.error("Please enter a medical summary.")
|
139 |
|
|
|
|
62 |
# else:
|
63 |
# st.error("Please enter a medical summary.")
|
64 |
|
65 |
+
# import torch
|
66 |
+
# import pandas as pd
|
67 |
+
# import streamlit as st
|
68 |
+
# from transformers import LongformerTokenizer, LongformerForSequenceClassification
|
69 |
+
|
70 |
+
# # Load the fine-tuned model and tokenizer
|
71 |
+
# model_path = "./clinical_longformer"
|
72 |
+
# tokenizer = LongformerTokenizer.from_pretrained(model_path)
|
73 |
+
# model = LongformerForSequenceClassification.from_pretrained(model_path)
|
74 |
+
# model.eval() # Set the model to evaluation mode
|
75 |
+
|
76 |
+
# # Load the ICD-9 descriptions from CSV into a dictionary
|
77 |
+
# icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
|
78 |
+
# icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
|
79 |
+
# icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
|
80 |
+
|
81 |
+
# # ICD-9 code columns used during training
|
82 |
+
# icd9_columns = [
|
83 |
+
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
|
84 |
+
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
|
85 |
+
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
|
86 |
+
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
|
87 |
+
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
|
88 |
+
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
|
89 |
+
# ]
|
90 |
+
|
91 |
+
# # Function for making predictions
|
92 |
+
# def predict_icd9(texts, tokenizer, model, threshold=0.5):
|
93 |
+
# inputs = tokenizer(
|
94 |
+
# texts,
|
95 |
+
# padding="max_length",
|
96 |
+
# truncation=True,
|
97 |
+
# max_length=512,
|
98 |
+
# return_tensors="pt"
|
99 |
+
# )
|
100 |
+
|
101 |
+
# with torch.no_grad():
|
102 |
+
# outputs = model(
|
103 |
+
# input_ids=inputs["input_ids"],
|
104 |
+
# attention_mask=inputs["attention_mask"]
|
105 |
+
# )
|
106 |
+
# logits = outputs.logits
|
107 |
+
# probabilities = torch.sigmoid(logits)
|
108 |
+
# predictions = (probabilities > threshold).int()
|
109 |
+
|
110 |
+
# predicted_icd9 = []
|
111 |
+
# for pred in predictions:
|
112 |
+
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
|
113 |
+
# predicted_icd9.append(codes)
|
114 |
+
|
115 |
+
# # Fetch descriptions for the predicted ICD-9 codes from the pre-loaded descriptions
|
116 |
+
# predictions_with_desc = []
|
117 |
+
# for codes in predicted_icd9:
|
118 |
+
# code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
|
119 |
+
# predictions_with_desc.append(code_with_desc)
|
120 |
+
|
121 |
+
# return predictions_with_desc
|
122 |
+
|
123 |
+
# # Streamlit UI
|
124 |
+
# st.title("ICD-9 Code Prediction")
|
125 |
+
# st.sidebar.header("Model Options")
|
126 |
+
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
|
127 |
+
|
128 |
+
# st.write("### Enter Medical Summary")
|
129 |
+
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
|
130 |
+
|
131 |
+
# if st.button("Predict"):
|
132 |
+
# if input_text.strip():
|
133 |
+
# predictions = predict_icd9([input_text], tokenizer, model, threshold)
|
134 |
+
# st.write("### Predicted ICD-9 Codes and Descriptions")
|
135 |
+
# for code, description in predictions[0]:
|
136 |
+
# st.write(f"- {code}: {description}")
|
137 |
+
# else:
|
138 |
+
# st.error("Please enter a medical summary.")
|
139 |
import torch
|
140 |
import pandas as pd
|
141 |
import streamlit as st
|
|
|
149 |
|
150 |
# Load the ICD-9 descriptions from CSV into a dictionary
|
151 |
icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
|
152 |
+
icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type
|
153 |
+
icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals for matching
|
154 |
+
|
155 |
+
# Load the ICD-9 to ICD-10 mapping
|
156 |
+
icd9_to_icd10 = {}
|
157 |
+
with open("2015_I9gem.txt", "r") as file:
|
158 |
+
for line in file:
|
159 |
+
parts = line.strip().split()
|
160 |
+
if len(parts) == 3:
|
161 |
+
icd9, icd10, _ = parts
|
162 |
+
icd9_to_icd10[icd9] = icd10
|
163 |
|
164 |
# ICD-9 code columns used during training
|
165 |
icd9_columns = [
|
|
|
171 |
'995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
|
172 |
]
|
173 |
|
174 |
+
# Function for making predictions and mapping to ICD-10
|
175 |
def predict_icd9(texts, tokenizer, model, threshold=0.5):
|
176 |
inputs = tokenizer(
|
177 |
texts,
|
|
|
180 |
max_length=512,
|
181 |
return_tensors="pt"
|
182 |
)
|
183 |
+
|
184 |
with torch.no_grad():
|
185 |
outputs = model(
|
186 |
input_ids=inputs["input_ids"],
|
|
|
189 |
logits = outputs.logits
|
190 |
probabilities = torch.sigmoid(logits)
|
191 |
predictions = (probabilities > threshold).int()
|
192 |
+
|
193 |
predicted_icd9 = []
|
194 |
for pred in predictions:
|
195 |
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
|
196 |
predicted_icd9.append(codes)
|
197 |
+
|
198 |
+
# Fetch descriptions and map to ICD-10 codes
|
199 |
predictions_with_desc = []
|
200 |
for codes in predicted_icd9:
|
201 |
+
code_with_desc = []
|
202 |
+
for code in codes:
|
203 |
+
icd9_stripped = code.replace('.', '')
|
204 |
+
icd10_code = icd9_to_icd10.get(icd9_stripped, "Mapping not found")
|
205 |
+
icd9_desc = icd9_descriptions.get(icd9_stripped, "Description not found")
|
206 |
+
code_with_desc.append((code, icd9_desc, icd10_code))
|
207 |
predictions_with_desc.append(code_with_desc)
|
208 |
+
|
209 |
return predictions_with_desc
|
210 |
|
211 |
# Streamlit UI
|
212 |
+
st.title("ICD-9 to ICD-10 Code Prediction")
|
213 |
st.sidebar.header("Model Options")
|
214 |
threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
|
215 |
|
|
|
219 |
if st.button("Predict"):
|
220 |
if input_text.strip():
|
221 |
predictions = predict_icd9([input_text], tokenizer, model, threshold)
|
222 |
+
st.write("### Predicted ICD-9 and ICD-10 Codes with Descriptions")
|
223 |
+
for icd9_code, description, icd10_code in predictions[0]:
|
224 |
+
st.write(f"- ICD-9: {icd9_code} ({description}) -> ICD-10: {icd10_code}")
|
225 |
else:
|
226 |
st.error("Please enter a medical summary.")
|
227 |
|
228 |
+
|