Spaces:
Running
Running
Update icd9_ui.py
Browse files- icd9_ui.py +63 -63
icd9_ui.py
CHANGED
@@ -1,63 +1,63 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
from transformers import LongformerTokenizer, LongformerForSequenceClassification
|
4 |
-
|
5 |
-
# Load the fine-tuned model and tokenizer
|
6 |
-
model_path = "./clinical_longformer"
|
7 |
-
tokenizer = LongformerTokenizer.from_pretrained(model_path)
|
8 |
-
model = LongformerForSequenceClassification.from_pretrained(model_path)
|
9 |
-
model.eval() # Set the model to evaluation mode
|
10 |
-
|
11 |
-
# ICD-9 code columns used during training
|
12 |
-
icd9_columns = [
|
13 |
-
'038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
|
14 |
-
'287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
|
15 |
-
'39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
|
16 |
-
'486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
|
17 |
-
'88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
|
18 |
-
'995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
|
19 |
-
]
|
20 |
-
|
21 |
-
# Function for making predictions
|
22 |
-
def predict_icd9(texts, tokenizer, model, threshold=0.5):
|
23 |
-
inputs = tokenizer(
|
24 |
-
texts,
|
25 |
-
padding="max_length",
|
26 |
-
truncation=True,
|
27 |
-
max_length=512,
|
28 |
-
return_tensors="pt"
|
29 |
-
)
|
30 |
-
|
31 |
-
with torch.no_grad():
|
32 |
-
outputs = model(
|
33 |
-
input_ids=inputs["input_ids"],
|
34 |
-
attention_mask=inputs["attention_mask"]
|
35 |
-
)
|
36 |
-
logits = outputs.logits
|
37 |
-
probabilities = torch.sigmoid(logits)
|
38 |
-
predictions = (probabilities > threshold).int()
|
39 |
-
|
40 |
-
predicted_icd9 = []
|
41 |
-
for pred in predictions:
|
42 |
-
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
|
43 |
-
predicted_icd9.append(codes)
|
44 |
-
|
45 |
-
return predicted_icd9
|
46 |
-
|
47 |
-
# Streamlit UI
|
48 |
-
st.title("ICD-9 Code Prediction")
|
49 |
-
st.sidebar.header("Model Options")
|
50 |
-
model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"])
|
51 |
-
threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
|
52 |
-
|
53 |
-
st.write("### Enter Medical Summary")
|
54 |
-
input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
|
55 |
-
|
56 |
-
if st.button("Predict"):
|
57 |
-
if input_text.strip():
|
58 |
-
predictions = predict_icd9([input_text], tokenizer, model, threshold)
|
59 |
-
st.write("### Predicted ICD-9 Codes")
|
60 |
-
for code in predictions[0]:
|
61 |
-
st.write(f"- {code}")
|
62 |
-
else:
|
63 |
-
st.error("Please enter a medical summary.")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import LongformerTokenizer, LongformerForSequenceClassification
|
4 |
+
|
5 |
+
# Load the fine-tuned model and tokenizer
|
6 |
+
model_path = "./clinical_longformer"
|
7 |
+
tokenizer = LongformerTokenizer.from_pretrained(model_path)
|
8 |
+
model = LongformerForSequenceClassification.from_pretrained(model_path)
|
9 |
+
model.eval() # Set the model to evaluation mode
|
10 |
+
|
11 |
+
# ICD-9 code columns used during training
|
12 |
+
icd9_columns = [
|
13 |
+
'038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
|
14 |
+
'287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
|
15 |
+
'39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
|
16 |
+
'486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
|
17 |
+
'88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
|
18 |
+
'995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
|
19 |
+
]
|
20 |
+
|
21 |
+
# Function for making predictions
|
22 |
+
def predict_icd9(texts, tokenizer, model, threshold=0.5):
|
23 |
+
inputs = tokenizer(
|
24 |
+
texts,
|
25 |
+
padding="max_length",
|
26 |
+
truncation=True,
|
27 |
+
max_length=512,
|
28 |
+
return_tensors="pt"
|
29 |
+
)
|
30 |
+
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(
|
33 |
+
input_ids=inputs["input_ids"],
|
34 |
+
attention_mask=inputs["attention_mask"]
|
35 |
+
)
|
36 |
+
logits = outputs.logits
|
37 |
+
probabilities = torch.sigmoid(logits)
|
38 |
+
predictions = (probabilities > threshold).int()
|
39 |
+
|
40 |
+
predicted_icd9 = []
|
41 |
+
for pred in predictions:
|
42 |
+
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
|
43 |
+
predicted_icd9.append(codes)
|
44 |
+
|
45 |
+
return predicted_icd9
|
46 |
+
|
47 |
+
# Streamlit UI
|
48 |
+
st.title("ICD-9 Code Prediction")
|
49 |
+
st.sidebar.header("Model Options")
|
50 |
+
model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"])
|
51 |
+
threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
|
52 |
+
|
53 |
+
st.write("### Enter Medical Summary")
|
54 |
+
input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
|
55 |
+
|
56 |
+
if st.button("Predict"):
|
57 |
+
if input_text.strip():
|
58 |
+
predictions = predict_icd9([input_text], tokenizer, model, threshold)
|
59 |
+
st.write("### Predicted ICD-9 Codes")
|
60 |
+
for code in predictions[0]:
|
61 |
+
st.write(f"- {code}")
|
62 |
+
else:
|
63 |
+
st.error("Please enter a medical summary.")
|