Spaces:
Running
Running
Update icd9_ui.py
Browse files- icd9_ui.py +82 -6
icd9_ui.py
CHANGED
@@ -1,5 +1,70 @@
|
|
1 |
-
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
|
|
|
|
3 |
from transformers import LongformerTokenizer, LongformerForSequenceClassification
|
4 |
|
5 |
# Load the fine-tuned model and tokenizer
|
@@ -8,6 +73,11 @@ tokenizer = LongformerTokenizer.from_pretrained(model_path)
|
|
8 |
model = LongformerForSequenceClassification.from_pretrained(model_path)
|
9 |
model.eval() # Set the model to evaluation mode
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
# ICD-9 code columns used during training
|
12 |
icd9_columns = [
|
13 |
'038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
|
@@ -42,12 +112,17 @@ def predict_icd9(texts, tokenizer, model, threshold=0.5):
|
|
42 |
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
|
43 |
predicted_icd9.append(codes)
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Streamlit UI
|
48 |
st.title("ICD-9 Code Prediction")
|
49 |
st.sidebar.header("Model Options")
|
50 |
-
model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"])
|
51 |
threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
|
52 |
|
53 |
st.write("### Enter Medical Summary")
|
@@ -56,8 +131,9 @@ input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes h
|
|
56 |
if st.button("Predict"):
|
57 |
if input_text.strip():
|
58 |
predictions = predict_icd9([input_text], tokenizer, model, threshold)
|
59 |
-
st.write("### Predicted ICD-9 Codes")
|
60 |
-
for code in predictions[0]:
|
61 |
-
st.write(f"- {code}")
|
62 |
else:
|
63 |
st.error("Please enter a medical summary.")
|
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import torch
|
3 |
+
# from transformers import LongformerTokenizer, LongformerForSequenceClassification
|
4 |
+
|
5 |
+
# # Load the fine-tuned model and tokenizer
|
6 |
+
# model_path = "./clinical_longformer"
|
7 |
+
# tokenizer = LongformerTokenizer.from_pretrained(model_path)
|
8 |
+
# model = LongformerForSequenceClassification.from_pretrained(model_path)
|
9 |
+
# model.eval() # Set the model to evaluation mode
|
10 |
+
|
11 |
+
# # ICD-9 code columns used during training
|
12 |
+
# icd9_columns = [
|
13 |
+
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
|
14 |
+
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
|
15 |
+
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
|
16 |
+
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
|
17 |
+
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
|
18 |
+
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
|
19 |
+
# ]
|
20 |
+
|
21 |
+
# # Function for making predictions
|
22 |
+
# def predict_icd9(texts, tokenizer, model, threshold=0.5):
|
23 |
+
# inputs = tokenizer(
|
24 |
+
# texts,
|
25 |
+
# padding="max_length",
|
26 |
+
# truncation=True,
|
27 |
+
# max_length=512,
|
28 |
+
# return_tensors="pt"
|
29 |
+
# )
|
30 |
+
|
31 |
+
# with torch.no_grad():
|
32 |
+
# outputs = model(
|
33 |
+
# input_ids=inputs["input_ids"],
|
34 |
+
# attention_mask=inputs["attention_mask"]
|
35 |
+
# )
|
36 |
+
# logits = outputs.logits
|
37 |
+
# probabilities = torch.sigmoid(logits)
|
38 |
+
# predictions = (probabilities > threshold).int()
|
39 |
+
|
40 |
+
# predicted_icd9 = []
|
41 |
+
# for pred in predictions:
|
42 |
+
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
|
43 |
+
# predicted_icd9.append(codes)
|
44 |
+
|
45 |
+
# return predicted_icd9
|
46 |
+
|
47 |
+
# # Streamlit UI
|
48 |
+
# st.title("ICD-9 Code Prediction")
|
49 |
+
# st.sidebar.header("Model Options")
|
50 |
+
# model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"])
|
51 |
+
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
|
52 |
+
|
53 |
+
# st.write("### Enter Medical Summary")
|
54 |
+
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
|
55 |
+
|
56 |
+
# if st.button("Predict"):
|
57 |
+
# if input_text.strip():
|
58 |
+
# predictions = predict_icd9([input_text], tokenizer, model, threshold)
|
59 |
+
# st.write("### Predicted ICD-9 Codes")
|
60 |
+
# for code in predictions[0]:
|
61 |
+
# st.write(f"- {code}")
|
62 |
+
# else:
|
63 |
+
# st.error("Please enter a medical summary.")
|
64 |
+
|
65 |
import torch
|
66 |
+
import pandas as pd
|
67 |
+
import streamlit as st
|
68 |
from transformers import LongformerTokenizer, LongformerForSequenceClassification
|
69 |
|
70 |
# Load the fine-tuned model and tokenizer
|
|
|
73 |
model = LongformerForSequenceClassification.from_pretrained(model_path)
|
74 |
model.eval() # Set the model to evaluation mode
|
75 |
|
76 |
+
# Load the ICD-9 descriptions from CSV into a dictionary
|
77 |
+
icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
|
78 |
+
icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
|
79 |
+
icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
|
80 |
+
|
81 |
# ICD-9 code columns used during training
|
82 |
icd9_columns = [
|
83 |
'038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
|
|
|
112 |
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
|
113 |
predicted_icd9.append(codes)
|
114 |
|
115 |
+
# Fetch descriptions for the predicted ICD-9 codes from the pre-loaded descriptions
|
116 |
+
predictions_with_desc = []
|
117 |
+
for codes in predicted_icd9:
|
118 |
+
code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
|
119 |
+
predictions_with_desc.append(code_with_desc)
|
120 |
+
|
121 |
+
return predictions_with_desc
|
122 |
|
123 |
# Streamlit UI
|
124 |
st.title("ICD-9 Code Prediction")
|
125 |
st.sidebar.header("Model Options")
|
|
|
126 |
threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
|
127 |
|
128 |
st.write("### Enter Medical Summary")
|
|
|
131 |
if st.button("Predict"):
|
132 |
if input_text.strip():
|
133 |
predictions = predict_icd9([input_text], tokenizer, model, threshold)
|
134 |
+
st.write("### Predicted ICD-9 Codes and Descriptions")
|
135 |
+
for code, description in predictions[0]:
|
136 |
+
st.write(f"- {code}: {description}")
|
137 |
else:
|
138 |
st.error("Please enter a medical summary.")
|
139 |
+
|