Spaces:
Sleeping
Sleeping
import config | |
import utils | |
import numpy as np | |
from tqdm import tqdm | |
from nltk.translate.bleu_score import sentence_bleu | |
def check_accuracy(dataset, model): | |
print('=> Testing') | |
model.eval() | |
bleu1_score = [] | |
bleu2_score = [] | |
bleu3_score = [] | |
bleu4_score = [] | |
for image, caption in tqdm(dataset): | |
image = image.to(config.DEVICE) | |
generated = model.generate_caption(image.unsqueeze(0), max_length=len(caption.split(' '))) | |
bleu1_score.append( | |
sentence_bleu([caption.split()], generated, weights=(1, 0, 0, 0)) | |
) | |
bleu2_score.append( | |
sentence_bleu([caption.split()], generated, weights=(0.5, 0.5, 0, 0)) | |
) | |
bleu3_score.append( | |
sentence_bleu([caption.split()], generated, weights=(0.33, 0.33, 0.33, 0)) | |
) | |
bleu4_score.append( | |
sentence_bleu([caption.split()], generated, weights=(0.25, 0.25, 0.25, 0.25)) | |
) | |
print(f'=> BLEU 1: {np.mean(bleu1_score)}') | |
print(f'=> BLEU 2: {np.mean(bleu2_score)}') | |
print(f'=> BLEU 3: {np.mean(bleu3_score)}') | |
print(f'=> BLEU 4: {np.mean(bleu4_score)}') | |
def main(): | |
all_dataset = utils.load_dataset(raw_caption=True) | |
model = utils.get_model_instance(all_dataset.vocab) | |
utils.load_checkpoint(model) | |
_, test_dataset = utils.train_test_split(dataset=all_dataset) | |
check_accuracy( | |
test_dataset, | |
model | |
) | |
if __name__ == '__main__': | |
main() | |