xrayreport / inference.py
adithiyyha's picture
Update inference.py
98b1d34 verified
raw
history blame
2.56 kB
import os
import torch
import config
import spacy
spacy.cli.download("en_core_web_sm")
from utils import (
load_dataset,
get_model_instance,
load_checkpoint,
can_load_checkpoint,
normalize_text,
)
from PIL import Image
import torchvision.transforms as transforms
import streamlit as st
# Define device
DEVICE = 'cpu'
# Define image transformations
TRANSFORMS = transforms.Compose([
transforms.Resize((224, 224)), # Replace with your model's expected input size
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def load_model():
"""
Loads the model with the vocabulary and checkpoint.
"""
st.write("Loading dataset and vocabulary...")
dataset = load_dataset()
vocabulary = dataset.vocab
st.write("Initializing the model...")
model = get_model_instance(vocabulary)
if can_load_checkpoint():
st.write("Loading checkpoint...")
load_checkpoint(model)
else:
st.write("No checkpoint found, starting with untrained model.")
model.eval() # Set the model to evaluation mode
st.write("Model is ready for inference.")
return model
def preprocess_image(image_path):
"""
Preprocess the input image for the model.
"""
st.write(f"Preprocessing image: {image_path}")
image = Image.open(image_path).convert("RGB")
image = TRANSFORMS(image).unsqueeze(0)
return image.to(DEVICE)
def generate_report(model, image):
"""
Generates a report for a given image using the model.
"""
st.write("Generating report...")
with torch.no_grad():
output = model.generate_caption(image, max_length=25)
report = " ".join(output)
st.write(f"Generated report: {report}")
return report
# Streamlit App
st.title("Medical Image Report Generator")
st.write("Upload an X-ray image to generate a report.")
# File uploader
uploaded_file = st.file_uploader("Choose an image file", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
# Save uploaded file to disk
image_path = os.path.join("temp", uploaded_file.name)
with open(image_path, "wb") as f:
f.write(uploaded_file.getbuffer())
# Load the model
model = load_model()
# Preprocess and generate the report
image = preprocess_image(image_path)
report = generate_report(model, image)
# Display the image and the report
st.image(image_path, caption="Uploaded Image", use_column_width=True)
st.write("Generated Report:")
st.write(report)