Spaces:
Sleeping
Sleeping
import config | |
import utils | |
import torch.nn as nn | |
import torch.optim as optim | |
import numpy as np | |
from tqdm import tqdm | |
from torch.utils.data import DataLoader | |
from dataset import CollateDataset | |
def train_epoch(loader, model, optimizer, loss_fn, epoch): | |
model.train() | |
losses = [] | |
loader = tqdm(loader) | |
for img, captions in loader: | |
img = img.to(config.DEVICE) | |
captions = captions.to(config.DEVICE) | |
output = model(img, captions) | |
loss = loss_fn( | |
output.reshape(-1, output.shape[2]), | |
captions[:, 1:].reshape(-1) | |
) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
loader.set_postfix(loss=loss.item()) | |
losses.append(loss.item()) | |
if config.SAVE_MODEL: | |
utils.save_checkpoint({ | |
'state_dict': model.state_dict(), | |
'optimizer': optimizer.state_dict(), | |
'epoch': epoch, | |
'loss': np.mean(losses) | |
}) | |
print(f'Epoch[{epoch}]: Loss {np.mean(losses)}') | |
def main(): | |
all_dataset = utils.load_dataset() | |
train_dataset, _ = utils.train_test_split(dataset=all_dataset) | |
train_loader = DataLoader( | |
dataset=train_dataset, | |
batch_size=config.BATCH_SIZE, | |
pin_memory=config.PIN_MEMORY, | |
drop_last=False, | |
shuffle=True, | |
collate_fn=CollateDataset(pad_idx=all_dataset.vocab.stoi['<PAD>']), | |
) | |
model = utils.get_model_instance(all_dataset.vocab) | |
optimizer = optim.Adam(model.parameters(), lr=config.LEARNING_RATE) | |
loss_fn = nn.CrossEntropyLoss(ignore_index=all_dataset.vocab.stoi['<PAD>']) | |
starting_epoch = 1 | |
if utils.can_load_checkpoint(): | |
starting_epoch = utils.load_checkpoint(model, optimizer) | |
for epoch in range(starting_epoch, config.EPOCHS): | |
train_epoch( | |
train_loader, | |
model, | |
optimizer, | |
loss_fn, | |
epoch | |
) | |
if __name__ == '__main__': | |
main() | |