Spaces:
Sleeping
Sleeping
Update inference.py
Browse files- inference.py +37 -25
inference.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
import config
|
|
|
4 |
from utils import (
|
5 |
load_dataset,
|
6 |
get_model_instance,
|
@@ -14,75 +15,86 @@ import torchvision.transforms as transforms
|
|
14 |
# Define device
|
15 |
DEVICE = 'cpu'
|
16 |
|
17 |
-
# Define image transformations
|
18 |
TRANSFORMS = transforms.Compose([
|
19 |
transforms.Resize((224, 224)), # Replace with your model's expected input size
|
20 |
transforms.ToTensor(),
|
21 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
22 |
])
|
23 |
|
24 |
-
|
25 |
def load_model():
|
26 |
"""
|
27 |
Loads the model with the vocabulary and checkpoint.
|
28 |
"""
|
29 |
-
|
30 |
dataset = load_dataset() # Load dataset to access vocabulary
|
31 |
vocabulary = dataset.vocab # Assuming 'vocab' is an attribute of the dataset
|
32 |
|
33 |
-
|
34 |
model = get_model_instance(vocabulary) # Initialize the model
|
35 |
|
36 |
if can_load_checkpoint():
|
37 |
-
|
38 |
load_checkpoint(model)
|
39 |
else:
|
40 |
-
|
41 |
|
42 |
model.eval() # Set the model to evaluation mode
|
43 |
-
|
44 |
return model
|
45 |
|
46 |
-
|
47 |
def preprocess_image(image_path):
|
48 |
"""
|
49 |
Preprocess the input image for the model.
|
50 |
"""
|
51 |
-
|
52 |
image = Image.open(image_path).convert("RGB") # Ensure RGB format
|
53 |
image = TRANSFORMS(image).unsqueeze(0) # Add batch dimension
|
54 |
return image.to(DEVICE)
|
55 |
|
56 |
-
|
57 |
def generate_report(model, image_path):
|
58 |
"""
|
59 |
Generates a report for a given image using the model.
|
60 |
"""
|
61 |
image = preprocess_image(image_path)
|
62 |
|
63 |
-
|
64 |
with torch.no_grad():
|
65 |
# Assuming the model has a 'generate_caption' method
|
66 |
output = model.generate_caption(image, max_length=25)
|
67 |
report = " ".join(output)
|
68 |
|
69 |
-
|
70 |
return report
|
71 |
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
CHECKPOINT_PATH = config.CHECKPOINT_FILE # Ensure config.CHECKPOINT_FILE is correctly set
|
76 |
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import config
|
4 |
+
import streamlit as st
|
5 |
from utils import (
|
6 |
load_dataset,
|
7 |
get_model_instance,
|
|
|
15 |
# Define device
|
16 |
DEVICE = 'cpu'
|
17 |
|
18 |
+
# Define image transformations
|
19 |
TRANSFORMS = transforms.Compose([
|
20 |
transforms.Resize((224, 224)), # Replace with your model's expected input size
|
21 |
transforms.ToTensor(),
|
22 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
23 |
])
|
24 |
|
|
|
25 |
def load_model():
|
26 |
"""
|
27 |
Loads the model with the vocabulary and checkpoint.
|
28 |
"""
|
29 |
+
st.write("Loading dataset and vocabulary...")
|
30 |
dataset = load_dataset() # Load dataset to access vocabulary
|
31 |
vocabulary = dataset.vocab # Assuming 'vocab' is an attribute of the dataset
|
32 |
|
33 |
+
st.write("Initializing the model...")
|
34 |
model = get_model_instance(vocabulary) # Initialize the model
|
35 |
|
36 |
if can_load_checkpoint():
|
37 |
+
st.write("Loading checkpoint...")
|
38 |
load_checkpoint(model)
|
39 |
else:
|
40 |
+
st.write("No checkpoint found, starting with untrained model.")
|
41 |
|
42 |
model.eval() # Set the model to evaluation mode
|
43 |
+
st.write("Model is ready for inference.")
|
44 |
return model
|
45 |
|
|
|
46 |
def preprocess_image(image_path):
|
47 |
"""
|
48 |
Preprocess the input image for the model.
|
49 |
"""
|
50 |
+
st.write(f"Preprocessing image: {image_path}")
|
51 |
image = Image.open(image_path).convert("RGB") # Ensure RGB format
|
52 |
image = TRANSFORMS(image).unsqueeze(0) # Add batch dimension
|
53 |
return image.to(DEVICE)
|
54 |
|
|
|
55 |
def generate_report(model, image_path):
|
56 |
"""
|
57 |
Generates a report for a given image using the model.
|
58 |
"""
|
59 |
image = preprocess_image(image_path)
|
60 |
|
61 |
+
st.write("Generating report...")
|
62 |
with torch.no_grad():
|
63 |
# Assuming the model has a 'generate_caption' method
|
64 |
output = model.generate_caption(image, max_length=25)
|
65 |
report = " ".join(output)
|
66 |
|
67 |
+
st.write(f"Generated report: {report}")
|
68 |
return report
|
69 |
|
70 |
+
# Streamlit app
|
71 |
+
def main():
|
72 |
+
st.title("Chest X-Ray Report Generator")
|
73 |
+
st.write("Upload a Chest X-Ray image to generate a medical report.")
|
74 |
|
75 |
+
# Upload image
|
76 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
77 |
|
78 |
+
if uploaded_file is not None:
|
79 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
80 |
+
st.write("")
|
81 |
|
82 |
+
# Save the uploaded file temporarily
|
83 |
+
image_path = "./temp_image.png"
|
84 |
+
with open(image_path, "wb") as f:
|
85 |
+
f.write(uploaded_file.getbuffer())
|
86 |
+
st.write("Image uploaded successfully.")
|
87 |
|
88 |
+
# Load the model
|
89 |
+
model = load_model()
|
90 |
+
|
91 |
+
# Generate report
|
92 |
+
report = generate_report(model, image_path)
|
93 |
+
st.write("### Generated Report:")
|
94 |
+
st.write(report)
|
95 |
+
|
96 |
+
# Clean up temporary file
|
97 |
+
os.remove(image_path)
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|