aditi2222 commited on
Commit
60bb875
·
1 Parent(s): ca56325

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -9
app.py CHANGED
@@ -2,9 +2,6 @@ import torch
2
  from transformers import BartTokenizer, BartForConditionalGeneration
3
  import gradio as gr
4
  from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline
5
-
6
-
7
-
8
  from transformers import pipeline
9
 
10
  pipe= pipeline('text2text-generation', model="SEBIS/legal_t5_small_trans_fr_en")
@@ -16,11 +13,6 @@ def generate_text(inp):
16
  return result
17
  #Gradio Interface
18
 
19
-
20
-
21
-
22
-
23
-
24
  model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
25
  tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
26
 
@@ -38,6 +30,6 @@ def article_summarization(result):
38
 
39
  #iface = gr.Interface(fn=article_summarization,title="Summarization in English",description="facebook/bart-large-cnn for summarization in English", inputs=(lines=50,['text']), outputs=["text"])
40
 
41
- iface = gr.Interface(fn=article_summarization,title="Summarization in English",description="facebook/bart-large-cnn for summarization in English", inputs=gr.inputs.Textbox(lines=50, placeholder="Enter newpaper article to be summarized"), outputs=["result"])
42
 
43
  iface.launch()
 
2
  from transformers import BartTokenizer, BartForConditionalGeneration
3
  import gradio as gr
4
  from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline
 
 
 
5
  from transformers import pipeline
6
 
7
  pipe= pipeline('text2text-generation', model="SEBIS/legal_t5_small_trans_fr_en")
 
13
  return result
14
  #Gradio Interface
15
 
 
 
 
 
 
16
  model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
17
  tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
18
 
 
30
 
31
  #iface = gr.Interface(fn=article_summarization,title="Summarization in English",description="facebook/bart-large-cnn for summarization in English", inputs=(lines=50,['text']), outputs=["text"])
32
 
33
+ iface = gr.Interface(fn=article_summarization,title="Summarization in English",description="facebook/bart-large-cnn for summarization in English", inputs=gr.inputs.Textbox(lines=50, placeholder="Enter newspaper article to be summarized"))
34
 
35
  iface.launch()