aditi2222 commited on
Commit
e981b8c
Β·
1 Parent(s): d004a35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -56
app.py CHANGED
@@ -1,68 +1,74 @@
1
- import re
2
  import streamlit as st
 
 
 
 
 
 
 
 
 
3
 
4
- from datetime import datetime
5
- from transformers import pipeline
6
- from available_models import MODELS
 
 
7
 
 
 
8
 
9
- st.set_page_config(page_title="Translator", page_icon="πŸ—£οΈ")
10
- st.title("πŸ—£οΈ Translator")
11
- st.subheader("Translation made fast and easy.")
12
 
13
- st.write("To add a new model, hit me up! ⬆️")
14
 
15
- with st.expander(label="❓ How does it work", expanded=True):
16
 
17
 
18
- lang1, lang2 = st.columns(2)
19
- lang1.selectbox(
20
- "Source Language", ["πŸ‡¬πŸ‡§ English", "πŸ‡«πŸ‡· French", "πŸ‡©πŸ‡ͺ German", "πŸ‡ͺπŸ‡Έ Spanish", "πŸ‡·πŸ‡Ί Russian"],
21
- key="input_lang", index=1,
22
- )
23
- lang2.selectbox(
24
- "Target Language", ["πŸ‡¬πŸ‡§ English", "πŸ‡«πŸ‡· French", "πŸ‡©πŸ‡ͺ German", "πŸ‡ͺπŸ‡Έ Spanish", "πŸ‡·πŸ‡Ί Russian"],
25
- key="output_lang", index=0,
 
 
 
 
 
 
 
 
 
 
 
 
26
  )
27
 
28
- selected_model = MODELS[f"{st.session_state['input_lang']}->{st.session_state['output_lang']}"]
 
29
 
 
 
 
30
 
31
- if selected_model[0] == None:
32
- st.write("No model available for this pair.")
33
- elif selected_model[0] == 0:
34
- st.write("No translation necessary.")
35
- else:
36
- st.markdown(f"""
37
- **Selected model:** [{selected_model[0]}]({selected_model[1]})
38
- """)
39
-
40
- input_text = st.text_area("Enter text to translate:", height=400, key="input")
41
- translate_text = st.button("Translate")
42
-
43
- if translate_text:
44
- with st.spinner(text="βš™οΈ Model loading..."):
45
- task = pipeline(
46
- "translation",
47
- model=selected_model[0],
48
- tokenizer=selected_model[0],
49
- )
50
-
51
- progress_bar = st.progress(0)
52
- with st.spinner(text="πŸ”„ Translating..."):
53
- text_to_translate = re.split('(?<=[.!?]) +', input_text)
54
- total_progress = len(text_to_translate)
55
-
56
- for i, text in enumerate(text_to_translate):
57
- translation = task(text)
58
- text_to_translate[i] = translation[0]["translation_text"]
59
- progress_bar.progress((i + 1) / total_progress)
60
-
61
- st.success("πŸ—£οΈ Translated!")
62
- st.write(f"**Translation:** {' '.join(text_to_translate)}")
63
- st.download_button(
64
- label="Download translated text",
65
- data="\n".join(text_to_translate),
66
- file_name=f"{st.session_state['input_lang']}-{st.session_state['output_lang']}-{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}.txt",
67
- mime="text/plain"
68
- )
 
 
1
  import streamlit as st
2
+ import os
3
+ import io
4
+ from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
5
+ import time
6
+ import json
7
+ from typing import List
8
+ import torch
9
+ import random
10
+ import logging
11
 
12
+ if torch.cuda.is_available():
13
+ device = torch.device("cuda:0")
14
+ else:
15
+ device = torch.device("cpu")
16
+ logging.warning("GPU not found, using CPU, translation will be very slow.")
17
 
18
+ st.cache(suppress_st_warning=True, allow_output_mutation=True)
19
+ st.set_page_config(page_title="M2M100 Translator")
20
 
21
+ lang_id = {
22
+
23
+ "English": "en",
24
 
25
+ "French": "fr",
26
 
27
+ }
28
 
29
 
30
+ @st.cache(suppress_st_warning=True, allow_output_mutation=True)
31
+ def load_model(
32
+ pretrained_model: str = "facebook/m2m100_418M",
33
+ cache_dir: str = "models/",
34
+ ):
35
+ tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
36
+ model = M2M100ForConditionalGeneration.from_pretrained(
37
+ pretrained_model, cache_dir=cache_dir
38
+ ).to(device)
39
+ model.eval()
40
+ return tokenizer, model
41
+
42
+
43
+ st.title("M2M100 Translator")
44
+
45
+
46
+ user_input: str = st.text_area(
47
+ "Input text",
48
+ height=200,
49
+ max_chars=5120,
50
  )
51
 
52
+ source_lang = st.selectbox(label="Source language", options=list(lang_id.keys()))
53
+ target_lang = st.selectbox(label="Target language", options=list(lang_id.keys()))
54
 
55
+ if st.button("Run"):
56
+ time_start = time.time()
57
+ tokenizer, model = load_model()
58
 
59
+ src_lang = lang_id[source_lang]
60
+ trg_lang = lang_id[target_lang]
61
+ tokenizer.src_lang = src_lang
62
+ with torch.no_grad():
63
+ encoded_input = tokenizer(user_input, return_tensors="pt").to(device)
64
+ generated_tokens = model.generate(
65
+ **encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
66
+ )
67
+ translated_text = tokenizer.batch_decode(
68
+ generated_tokens, skip_special_tokens=True
69
+ )[0]
70
+
71
+ time_end = time.time()
72
+ st.success(translated_text)
73
+
74
+ st.write(f"Computation time: {round((time_end-time_start),3)} segs")