File size: 1,574 Bytes
acd0faf
 
 
 
 
 
f125512
acd0faf
 
 
d708484
acd0faf
 
 
 
 
98a5175
acd0faf
 
 
 
e3b8de8
acd0faf
 
 
 
 
 
 
 
b9df37f
 
 
9cbd20a
 
6c2f23d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
from transformers import (T5ForConditionalGeneration,T5Tokenizer)
import gradio as gr

best_model_path = "aditi2222/t5-paraphrase"
model = T5ForConditionalGeneration.from_pretrained(best_model_path)
tokenizer = T5Tokenizer.from_pretrained("aditi2222/t5-paraphrase")

def tokenize_data(text):
    # Tokenize the review body
    input_ = "paraphrase: "+ str(text) + ' </s>'
    max_len = 64
    # tokenize inputs
    tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt')

    inputs={"input_ids": tokenized_inputs['input_ids'],
        "attention_mask": tokenized_inputs['attention_mask']}
    return inputs

def generate_answers(text):
    inputs = tokenize_data(text)
    results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True,
                            max_length=64,
                            top_k=120,
                            top_p=0.98,
                            early_stopping=True,
                            num_return_sequences=1)
    answer = tokenizer.decode(results[0], skip_special_tokens=True)
    return answer

#iface = gr.Interface(fn=generate_answers, inputs=['text'], outputs=["text"])
#iface.launch(inline=False, share=True)

iface = gr.Interface(fn=generate_answers, inputs=[gr.inputs.Textbox(lines=30)],outputs=["text"])
#iface = gr.Interface(fn=generate_answers, inputs=[gr.inputs.Textbox(lines=30)],outputs=#[gr.outputs.Textbox(lines=15)])
iface.launch(inline=False, share=True)