File size: 3,804 Bytes
d6c6696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# System packages\n",
    "import sys\n",
    "import os\n",
    "\n",
    "# 3rd party packages\n",
    "import pandas as pd\n",
    "import dotenv\n",
    "import json\n",
    "\n",
    "# Our main package (coming soon!)\n",
    "# import ami_ml\n",
    "\n",
    "# Local development packages not yet in the main package\n",
    "sys.path.append(\"./\")\n",
    "\n",
    "# Auto reload your development packages\n",
    "%load_ext autoreload\n",
    "%autoreload 2\n",
    "\n",
    "# Load secrets and config from optional .env file\n",
    "dotenv.load_dotenv()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "No. of accepted moth species: 46983\n",
      "No. of unique genera: 9413\n",
      "No. of unique families: 124\n"
     ]
    }
   ],
   "source": [
    "# Read the global moth checklist\n",
    "moth_checklist_df = pd.read_csv(os.getenv(\"GLOBAL_MOTH_CHECKLIST\"))\n",
    "\n",
    "# Get statistics regarding accepted moth species\n",
    "accepted_moths = moth_checklist_df[moth_checklist_df[\"taxonomicStatus\"] == \"ACCEPTED\"]\n",
    "num_genus = set(accepted_moths[\"genus\"])\n",
    "num_family = set(accepted_moths[\"family\"])\n",
    "print(f\"No. of accepted moth species: {accepted_moths.shape[0]}\")\n",
    "print(f\"No. of unique genera: {len(num_genus)}\")\n",
    "print(f\"No. of unique families: {len(num_family)}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Save the accepted taxon keys to json file\n",
    "unique_accepted_keys = list(accepted_moths[\"acceptedTaxonKey\"])\n",
    "file_path = os.getenv(\"ACCEPTED_KEY_LIST\")\n",
    "with open(file_path, \"w\") as file:\n",
    "    json.dump(unique_accepted_keys, file)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Test the json file read\n",
    "with open(os.getenv(\"ACCEPTED_KEY_LIST\")) as f:\n",
    "    keys_list = json.load(f)\n",
    "    keys_list = [int(x) for x in keys_list]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Calculate the total occurrences for all accepted taxon keys, with a cap of 1000"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The total occurrences with a cap of thousand images is 3898528.\n"
     ]
    }
   ],
   "source": [
    "num_occ = list(accepted_moths[\"numberOfOccurrences\"])\n",
    "num_occ_limit = []  \n",
    "for count in num_occ:\n",
    "    if count <= 1000: num_occ_limit.append(count)\n",
    "    else: num_occ_limit.append(1000)\n",
    "\n",
    "print(f\"The total occurrences with a cap of thousand images is {sum(num_occ_limit)}.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}