File size: 5,307 Bytes
d6c6696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import json

import PIL
import timm
import torch
from torchvision import transforms


class ModelInference:
    """Model inference class definition"""

    def __init__(
        self,
        model_path: str,
        model_type: str,
        category_map_json: str,
        categ_to_name_map_json: str,
        device: str,
        input_size: int = 128,
        topk: int = 10,
    ):
        self.device = device
        self.topk = topk
        self.input_size = input_size
        self.model_type = model_type
        self.image = None
        self.id2categ = self._load_category_map(category_map_json)
        self.categ2name = self._load_categ_to_name_map(categ_to_name_map_json)
        self.model = self._load_model(model_path, num_classes=len(self.id2categ))
        self.model.eval()

    def _load_categ_to_name_map(self, categ_to_name_map_json: str):
        with open(categ_to_name_map_json, "r") as f:
            categ_to_name_map = json.load(f)

        return categ_to_name_map

    def _load_category_map(self, category_map_json: str):
        with open(category_map_json, "r") as f:
            categories_map = json.load(f)

        id2categ = {categories_map[categ]: categ for categ in categories_map}
        return id2categ

    def _pad_to_square(self):
        """Padding transformation to make the image square"""
        width, height = self.image.size
        if height < width:
            return transforms.Pad(padding=[0, 0, 0, width - height])
        elif height > width:
            return transforms.Pad(padding=[0, 0, height - width, 0])
        else:
            return transforms.Pad(padding=[0, 0, 0, 0])

    def get_transforms(self):
        mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
        return transforms.Compose(
            [
                self._pad_to_square(),
                transforms.ToTensor(),
                transforms.Resize((self.input_size, self.input_size), antialias=True),
                transforms.Normalize(mean, std),
            ]
        )

    def _load_model(self, model_path: str, num_classes: int, pretrained: bool = True):
        if self.model_type == "resnet50":
            model = timm.create_model(
                "resnet50", pretrained=pretrained, num_classes=num_classes
            )

        elif self.model_type == "timm_resnet50":
            model = timm.create_model(
                "resnet50", pretrained=pretrained, num_classes=num_classes
            )

        elif self.model_type == "timm_convnext-t":
            model = timm.create_model(
                "convnext_tiny_in22k", pretrained=pretrained, num_classes=num_classes
            )

        elif self.model_type == "timm_convnext-b":
            model = timm.create_model(
                "convnext_base_in22k", pretrained=pretrained, num_classes=num_classes
            )

        elif self.model_type == "efficientnetv2-b3":
            model = timm.create_model(
                "tf_efficientnetv2_b3", pretrained=pretrained, num_classes=num_classes
            )

        elif self.model_type == "timm_mobilenetv3large":
            model = timm.create_model(
                "mobilenetv3_large_100", pretrained=pretrained, num_classes=num_classes
            )

        elif self.model_type == "timm_vit-b16-128":
            model = timm.create_model(
                "vit_base_patch16_224_in21k",
                pretrained=pretrained,
                img_size=128,
                num_classes=num_classes,
            )

        else:
            raise RuntimeError(f"Model {self.model_type} not implemented")

        # Load model weights
        model.load_state_dict(
            torch.load(model_path, map_location=torch.device(self.device))
        )
        # Parallelize inference if multiple GPUs available
        if torch.cuda.device_count() > 1:
            model = torch.nn.DataParallel(model)

        model = model.to(self.device)
        return model

    def predict(self, image: PIL.Image.Image):
        with torch.no_grad():
            # Process the image for prediction
            self.image = image
            transforms = self.get_transforms()
            image = transforms(image)
            image = image.to(self.device)
            image = image.unsqueeze_(0)

            # Model prediction on the image
            predictions = self.model(image)
            predictions = torch.nn.functional.softmax(predictions, dim=1)
            predictions = predictions.cpu()
            if self.topk == 0 or self.topk > len(
                predictions[0]
            ):  # topk=0 means get all predictions
                predictions = torch.topk(predictions, len(predictions[0]))
            else:
                predictions = torch.topk(predictions, self.topk)

            # Process the results
            values, indices = (
                predictions.values.numpy()[0],
                predictions.indices.numpy()[0],
            )
            pred_results = {}

            for i in range(len(indices)):
                idx, value = indices[i], values[i]
                categ = self.id2categ[idx]
                sp_name = self.categ2name[categ]
                pred_results[sp_name] = value
                # pred_results.append([sp_name, round(value*100, 2)])

            return pred_results