Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- app.py +48 -0
- requirements.txt +5 -0
- tasks/image_caption.py +10 -0
- tasks/image_retrieval.py +21 -0
- tasks/visual_qa.py +10 -0
app.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from tasks.image_caption import image_captioning
|
| 3 |
+
from tasks.image_retrieval import image_retrieval
|
| 4 |
+
from tasks.visual_qa import visual_qa
|
| 5 |
+
|
| 6 |
+
caption_interface = gr.Interface(
|
| 7 |
+
fn=image_captioning,
|
| 8 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
| 9 |
+
outputs=gr.Textbox(label="Generated Caption"),
|
| 10 |
+
title="Image Captioning",
|
| 11 |
+
description="Generate a caption for the uploaded image.",
|
| 12 |
+
allow_flagging="never"
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
retrieval_interface = gr.Interface(
|
| 16 |
+
fn=image_retrieval,
|
| 17 |
+
inputs=[
|
| 18 |
+
gr.Textbox(label="Image URL"),
|
| 19 |
+
gr.Textbox(label="Description Text")
|
| 20 |
+
],
|
| 21 |
+
outputs=[
|
| 22 |
+
gr.Image(label="Retrieved Image"),
|
| 23 |
+
gr.Textbox(label="Matching Probability")
|
| 24 |
+
],
|
| 25 |
+
title="Image Retrieval",
|
| 26 |
+
description="Check if the image and text match semantically.",
|
| 27 |
+
allow_flagging="never"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
vqa_interface = gr.Interface(
|
| 31 |
+
fn=visual_qa,
|
| 32 |
+
inputs=[
|
| 33 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 34 |
+
gr.Textbox(label="Question")
|
| 35 |
+
],
|
| 36 |
+
outputs=gr.Textbox(label="Answer"),
|
| 37 |
+
title="Visual Question Answering",
|
| 38 |
+
description="Answer questions about the uploaded image.",
|
| 39 |
+
allow_flagging="never"
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Combine vision-langauge tasks into a tabbed interface
|
| 43 |
+
app = gr.TabbedInterface(
|
| 44 |
+
interface_list=[caption_interface, retrieval_interface, vqa_interface],
|
| 45 |
+
tab_names=["Image Captioning", "Image Retrieval", "Visual Q&A"]
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
app.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
gradio
|
| 3 |
+
torch
|
| 4 |
+
requests
|
| 5 |
+
pillow
|
tasks/image_caption.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoProcessor, BlipForConditionalGeneration
|
| 2 |
+
|
| 3 |
+
caption_id = "Salesforce/blip-image-captioning-base"
|
| 4 |
+
caption_model = BlipForConditionalGeneration.from_pretrained(caption_id)
|
| 5 |
+
caption_processor = AutoProcessor.from_pretrained(caption_id)
|
| 6 |
+
|
| 7 |
+
def image_captioning(image):
|
| 8 |
+
inputs = caption_processor(image, "a photograph of", return_tensors="pt")
|
| 9 |
+
out = caption_model.generate(**inputs)
|
| 10 |
+
return caption_processor.decode(out[0], skip_special_tokens=True)
|
tasks/image_retrieval.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoProcessor, BlipForImageTextRetrieval
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import requests
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
retrieval_id = "Salesforce/blip-itm-base-coco"
|
| 7 |
+
retrieval_model = BlipForImageTextRetrieval.from_pretrained(retrieval_id)
|
| 8 |
+
retrieval_processor = AutoProcessor.from_pretrained(retrieval_id)
|
| 9 |
+
|
| 10 |
+
def image_retrieval(image_url, text):
|
| 11 |
+
try:
|
| 12 |
+
raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
|
| 13 |
+
inputs = retrieval_processor(images=raw_image, text=text, return_tensors="pt")
|
| 14 |
+
itm_scores = retrieval_model(**inputs)[0]
|
| 15 |
+
itm_score = torch.nn.functional.softmax(itm_scores, dim=1)
|
| 16 |
+
probability = itm_score[0][1].item()
|
| 17 |
+
|
| 18 |
+
return raw_image, f"The image and text are matched with a probability of {probability:.4f}"
|
| 19 |
+
except Exception as e:
|
| 20 |
+
return None, f"Error: {str(e)}"
|
| 21 |
+
|
tasks/visual_qa.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoProcessor, BlipForQuestionAnswering
|
| 2 |
+
|
| 3 |
+
vqa_id = "Salesforce/blip-vqa-base"
|
| 4 |
+
vqa_model = BlipForQuestionAnswering.from_pretrained(vqa_id)
|
| 5 |
+
vqa_processor = AutoProcessor.from_pretrained(vqa_id)
|
| 6 |
+
|
| 7 |
+
def visual_qa(image, question):
|
| 8 |
+
inputs = vqa_processor(image, question, return_tensors="pt")
|
| 9 |
+
out = vqa_model.generate(**inputs)
|
| 10 |
+
return vqa_processor.decode(out[0], skip_special_tokens=True)
|