adityasrathore's picture
Update app.py
49c39ca
raw
history blame
1.82 kB
demo = gr.Interface()
with demo:
gr.Markdown("## Financial Analyst AI")
gr.Markdown("This project applies AI trained by our financial analysts to analyze earning calls and other financial documents.")
# Row 1: Speech Recognition and Text Summarization
with gr.Row():
with gr.Column():
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
b1 = gr.Button("Recognize Speech")
text = gr.Textbox(value="") # Textbox for speech-to-text output
with gr.Column():
b2 = gr.Button("Summarize Text")
stext = gr.Textbox() # Textbox for summarized text output
# Row 2: Financial Tone Analysis
with gr.Row():
b3 = gr.Button("Classify Financial Tone")
label = gr.Label() # Label for sentiment analysis output
# Row 3: Financial Tone and Forward Looking Statement Analysis
with gr.Row():
b5 = gr.Button("Financial Tone and Forward Looking Statement Analysis")
fin_spans = gr.HighlightedText() # HighlightedText for financial sentiment spans
fls_spans = gr.HighlightedText() # HighlightedText for forward looking statement spans
# Row 4: Identify Companies & Locations
with gr.Row():
b4 = gr.Button("Identify Companies & Locations")
replaced_spans = gr.HighlightedText() # HighlightedText for named entity recognition spans
# Define the click handlers for the buttons
b1.click(speech_to_text, inputs=audio_file, outputs=text)
b2.click(summarize_text, inputs=text, outputs=stext)
b3.click(text_to_sentiment, inputs=stext, outputs=label)
b5.click(fin_ext, inputs=text, outputs=fin_spans)
b5.click(fls, inputs=text, outputs=fls_spans)
b4.click(fin_ner, inputs=text, outputs=replaced_spans)
demo.launch()