Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install gradio==3.0.18") | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification | |
import gradio as gr | |
import spacy | |
nlp = spacy.load('en_core_web_sm') | |
nlp.add_pipe('sentencizer') | |
def split_in_sentences(text): | |
doc = nlp(text) | |
return [str(sent).strip() for sent in doc.sents] | |
def make_spans(text,results): | |
results_list = [] | |
for i in range(len(results)): | |
results_list.append(results[i]['label']) | |
facts_spans = [] | |
facts_spans = list(zip(split_in_sentences(text),results_list)) | |
return facts_spans | |
auth_token = os.environ.get("HF_Token") | |
##Speech Recognition | |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
def transcribe(audio): | |
text = asr(audio)["text"] | |
return text | |
def speech_to_text(speech): | |
text = asr(speech)["text"] | |
return text | |
##Summarization | |
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
def summarize_text(text): | |
resp = summarizer(text) | |
stext = resp[0]['summary_text'] | |
return stext | |
##Fiscal Tone Analysis | |
fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone') | |
def text_to_sentiment(text): | |
sentiment = fin_model(text)[0]["label"] | |
return sentiment | |
##Company Extraction | |
def fin_ner(text): | |
api = gr.Interface.load("dslim/bert-base-NER", src='models', use_auth_token=auth_token) | |
replaced_spans = api(text) | |
return replaced_spans | |
##Fiscal Sentiment by Sentence | |
def fin_ext(text): | |
results = fin_model(split_in_sentences(text)) | |
return make_spans(text,results) | |
##Forward Looking Statement | |
def fls(text): | |
# fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls") | |
fls_model = pipeline("text-classification", model="demo-org/finbert_fls", tokenizer="demo-org/finbert_fls", use_auth_token=auth_token) | |
results = fls_model(split_in_sentences(text)) | |
return make_spans(text,results) | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("## Financial Analyst AI") | |
gr.Markdown("This project applies AI trained by our financial analysts to analyze earning calls and other financial documents.") | |
with gr.Column(): # Main Column | |
with gr.Row(): | |
with gr.Column(): # Left Column | |
audio_file = gr.inputs.Audio(source="microphone", type="filepath") | |
b1 = gr.Button("Recognize Speech") | |
text = gr.Textbox(value="") # Move this outside the row | |
b2 = gr.Button("Summarize Text") | |
stext = gr.Textbox() | |
b3 = gr.Button("Classify Financial Tone") | |
label = gr.Label() | |
# Reorganize the layout of the buttons and inputs | |
b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
b2.click(summarize_text, inputs=text, outputs=stext) | |
b3.click(text_to_sentiment, inputs=stext, outputs=label) | |
with gr.Column(): # Right Column | |
b5 = gr.Button("Financial Tone and Forward Looking Statement Analysis") | |
fin_spans = gr.HighlightedText() | |
fls_spans = gr.HighlightedText() | |
b5.click(fin_ext, inputs=text, outputs=fin_spans) | |
# b5.click(fls, inputs=text, outputs=fls_spans) | |
b4 = gr.Button("Identify Companies & Locations") | |
replaced_spans = gr.HighlightedText() | |
b4.click(fin_ner, inputs=text, outputs=replaced_spans) | |
# Place the textbox here, so it's separate from the buttons and inputs | |
text = gr.Textbox(value="") | |
demo.launch() | |