adityya7 commited on
Commit
ebf9f8e
·
verified ·
1 Parent(s): eb227a9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import cv2
4
+ from PIL import Image
5
+
6
+ def detect_faces(image , slider ) :
7
+ # detect faces
8
+ # convert image in to numpy array
9
+ image_np = np.array(image)
10
+ # convert image into gray
11
+ gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
12
+ # use detectmultiscale function to detect faces using haar cascade
13
+ face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
14
+ faces = face_cascade.detectMultiScale(gray_image, scaleFactor=slider, minNeighbors=5, minSize=(30, 30))
15
+ # draw rectangle along detected faces
16
+ for (x, y, w, h) in faces:
17
+ cv2.rectangle(image_np, (x, y), (x+w, y+h), (255, 0, 0), 5)
18
+
19
+ return image_np
20
+
21
+ slider = gr.Slider(minimum=1, maximum=2, step=.1, label="Adjust the ScaleFactor")
22
+
23
+ iface = gr.Interface( fn=detect_faces,
24
+ inputs=["image","slider"],
25
+ outputs="image",
26
+ title="Face Detection using Haar Cascade Classifier ",
27
+ description="Upload an image,and the model will detect faces and draw bounding boxes around them.",
28
+ )
29
+
30
+ iface.launch()