import numpy as np import cv2 import gradio as gr from PIL import Image def detect_faces(image): image_np= np.array(image) gray_image= cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) face_cascade= cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.74, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 9) return image_np iface= gr.Interface(fn=detect_faces,inputs="image",outputs="image",title="Face Detection",description="Upload an image, and the model will detect faces and draw bounding boxes around them.",) iface.launch()