Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +59 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,61 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
import streamlit as st
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
"
|
29 |
-
|
30 |
-
|
31 |
-
})
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from groq import Groq
|
3 |
+
from dotenv import load_dotenv
|
4 |
import streamlit as st
|
5 |
|
6 |
+
# Load environment variables from .env file
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
# Get the API key from environment variable
|
10 |
+
api_key = os.getenv("GROQ_API_KEY")
|
11 |
+
|
12 |
+
# Initialize Groq client with the API key
|
13 |
+
client = Groq(api_key=api_key)
|
14 |
+
|
15 |
+
# Define your chatbot logic for student exam preparation assistant
|
16 |
+
def chatbot():
|
17 |
+
st.title("Student Exam Preparation Assistant ๐")
|
18 |
+
st.write("Welcome to your personal exam preparation assistant! Whether you're preparing for a high school exam, college exams, or any professional tests, I'm here to help. What would you like assistance with today?")
|
19 |
+
|
20 |
+
# Add an attractive header with an emoji
|
21 |
+
st.markdown("**Ask me anything about exam preparation!**")
|
22 |
+
st.markdown("I can help you with study tips, time management strategies, practice questions, and more. Letโs get started! ๐")
|
23 |
+
|
24 |
+
# Input field for the user to type a message
|
25 |
+
user_input = st.text_input("Type your exam preparation question here:")
|
26 |
+
|
27 |
+
# Add a submit button
|
28 |
+
if st.button("Submit"):
|
29 |
+
if user_input:
|
30 |
+
# Display user's input
|
31 |
+
st.write(f"You: {user_input}")
|
32 |
+
|
33 |
+
# Sending user's input to Groq API for completion
|
34 |
+
try:
|
35 |
+
completion = client.chat.completions.create(
|
36 |
+
model="deepseek-r1-distill-llama-70b", # You can change this model based on your preference
|
37 |
+
messages=[{"role": "user", "content": user_input}],
|
38 |
+
temperature=0.6,
|
39 |
+
max_completion_tokens=4096,
|
40 |
+
top_p=0.95,
|
41 |
+
stream=True,
|
42 |
+
stop=None,
|
43 |
+
)
|
44 |
+
|
45 |
+
# Collect the response chunk by chunk
|
46 |
+
response = ""
|
47 |
+
for chunk in completion:
|
48 |
+
# Get the assistant's response from each chunk
|
49 |
+
response += chunk.choices[0].delta.content or ""
|
50 |
+
|
51 |
+
# Display assistant's response
|
52 |
+
st.write(f"Assistant: {response}")
|
53 |
+
|
54 |
+
except Exception as e:
|
55 |
+
st.write(f"Error occurred: {e}")
|
56 |
+
else:
|
57 |
+
st.write("Please type a question before submitting. ๐")
|
58 |
+
|
59 |
+
# Run the chatbot with dynamic user input
|
60 |
+
if __name__ == "__main__":
|
61 |
+
chatbot()
|