Spaces:
Sleeping
Sleeping
# app.py | |
from transformers import pipeline | |
import gradio as gr | |
# Load the text classification pipeline with the custom model | |
pipe = pipeline("text-classification", model="palakagl/bert_TextClassification") | |
# Define function to classify input text | |
def classify_text(text): | |
result = pipe(text) | |
# Format nicely for display | |
return {res["label"]: round(res["score"], 4) for res in result} | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=classify_text, | |
inputs=gr.Textbox(lines=3, placeholder="Enter text to classify..."), | |
outputs=gr.Label(num_top_classes=3), | |
title="BERT Text Classifier", | |
description="Enter text to classify using the BERT model from palakagl/bert_TextClassification." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() |