text-classifier / app.py
adityya7's picture
Create app.py
aaf7783 verified
raw
history blame contribute delete
796 Bytes
# app.py
from transformers import pipeline
import gradio as gr
# Load the text classification pipeline with the custom model
pipe = pipeline("text-classification", model="palakagl/bert_TextClassification")
# Define function to classify input text
def classify_text(text):
result = pipe(text)
# Format nicely for display
return {res["label"]: round(res["score"], 4) for res in result}
# Create the Gradio interface
interface = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(lines=3, placeholder="Enter text to classify..."),
outputs=gr.Label(num_top_classes=3),
title="BERT Text Classifier",
description="Enter text to classify using the BERT model from palakagl/bert_TextClassification."
)
# Launch the app
if __name__ == "__main__":
interface.launch()