Spaces:
Runtime error
Runtime error
File size: 5,463 Bytes
9b801f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import time
import logging
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from confluent_kafka import KafkaException, TopicPartition, Producer, Consumer
from confluent_kafka.schema_registry.avro import AvroDeserializer, AvroSerializer
from confluent_kafka.serialization import MessageField, SerializationContext
from aitask import handle_message, TooManyRequestsError
from schemaregistry import SchemaClient
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
schema_registry_url = os.getenv("SCHEMA_REGISTRY_URL")
kafka_domain = os.getenv('DOMAIN')
password = os.getenv('PASSWORD')
conf = {
'bootstrap.servers': f"{kafka_domain}:29092",
'security.protocol': 'SASL_PLAINTEXT',
'sasl.mechanism': 'PLAIN',
'sasl.username': "dathuynh",
'sasl.password': password,
}
# Shutdown flag
shutdown_event = threading.Event()
def avro_deserializer():
schema_client = SchemaClient(schema_registry_url, "cybersentinal.avro.scan")
schema_str = schema_client.get_schema_str()
if schema_str is None:
raise RuntimeError("Failed to fetch schema for MessageResponse")
schema_registry_client = schema_client.schema_registry_client
return AvroDeserializer(schema_registry_client, schema_str)
def avro_serializer():
schema_client = SchemaClient(schema_registry_url, "cybersentinal.avro.scandetail")
schema_str = schema_client.get_schema_str()
if schema_str is None:
raise RuntimeError("Failed to fetch schema for MessageResponse")
schema_registry_client = schema_client.schema_registry_client
return AvroSerializer(schema_registry_client, schema_str)
def create_consumer(group_id):
consumer_conf = {
**conf,
'group.id': group_id,
'auto.offset.reset': 'latest',
'session.timeout.ms': 60000,
'heartbeat.interval.ms': 3000,
'enable.auto.commit': False, # Manual commit
'log_level': 4
}
return Consumer(**consumer_conf)
def create_producer():
producer_conf = {
**conf,
'linger.ms': 10,
'batch.num.messages': 1000,
'queue.buffering.max.ms': 1000
}
return Producer(**producer_conf)
# Create producer instance
producer = create_producer()
def ensure_producer_connected(producer):
retries = 5
for attempt in range(retries):
try:
producer.list_topics(timeout=5)
break
except KafkaException as e:
if attempt < retries - 1:
time.sleep(5)
else:
logger.error("Max retries reached. Could not establish a producer connection.")
raise e
def decode_message(msg, avro_deserializer, topic):
try:
byte_message = msg.value()
return avro_deserializer(byte_message, SerializationContext(topic, MessageField.VALUE))
except Exception as e:
logger.error(f"Error decoding message: {e}")
return None
def kafka_consumer(group_id, topic):
consumer = create_consumer(group_id)
consumer.subscribe([topic])
deserializer = avro_deserializer()
serializer = avro_serializer()
logger.info(f"Consumer {group_id} is running. Waiting for messages on topic {topic}...")
with ThreadPoolExecutor(max_workers=10) as executor:
shutdown_timer = threading.Timer(14400, shutdown_event.set) # Set to shutdown after 4 hours
shutdown_timer.start()
while not shutdown_event.is_set():
try:
msgs = consumer.consume(num_messages=10, timeout=1.0)
if not msgs:
continue
futures = [
executor.submit(
handle_message,
decode_message(msg, deserializer, topic),
producer,
ensure_producer_connected,
serializer
) for msg in msgs if decode_message(msg, deserializer, topic) is not None
]
for future in as_completed(futures):
try:
future.result()
except Exception as e:
if isinstance(e, TooManyRequestsError):
partition = msg.partition()
consumer.pause([TopicPartition(topic, partition)])
logger.info(f"Paused partition {partition} due to TooManyRequestsError")
handle_retry(consumer, topic, partition, e.retry_after)
else:
logger.error(f"Error processing message: {e}")
raise e
except KafkaException as e:
logger.error(f"Kafka exception: {e}. Restarting consumer loop...")
time.sleep(5)
except KeyboardInterrupt:
logger.info("Consumer interrupted. Exiting...")
shutdown_event.set()
shutdown_timer.cancel()
consumer.close()
def handle_retry(consumer, topic, partition, retry_after):
time.sleep(retry_after)
consumer.resume([TopicPartition(topic, partition)])
def start_kafka_consumer_thread(group_id, topic):
consumer_thread = threading.Thread(target=kafka_consumer, args=(group_id, topic))
consumer_thread.daemon = True
consumer_thread.start()
return consumer_thread |