File size: 16,753 Bytes
7bb7bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469c254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bb7bdc
469c254
 
 
 
 
 
7bb7bdc
 
469c254
 
 
 
 
 
7bb7bdc
469c254
 
 
 
 
 
 
 
 
7bb7bdc
469c254
 
 
 
 
 
7bb7bdc
 
469c254
 
 
 
7bb7bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469c254
7bb7bdc
469c254
 
 
 
 
 
7bb7bdc
469c254
 
 
7bb7bdc
469c254
 
7bb7bdc
469c254
7bb7bdc
469c254
7bb7bdc
469c254
 
7bb7bdc
469c254
 
7bb7bdc
 
 
 
 
 
469c254
 
7bb7bdc
469c254
7bb7bdc
 
 
 
 
 
 
 
 
 
469c254
7bb7bdc
 
 
 
 
 
 
 
 
 
469c254
7bb7bdc
469c254
 
7bb7bdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# import streamlit as st
# import torch
# import pandas as pd
# import numpy as np
# from pathlib import Path
# import sys
# import plotly.express as px
# import plotly.graph_objects as go
# from transformers import BertTokenizer
# import nltk

# # Download required NLTK data
# try:
#     nltk.data.find('tokenizers/punkt')
# except LookupError:
#     nltk.download('punkt')
# try:
#     nltk.data.find('corpora/stopwords')
# except LookupError:
#     nltk.download('stopwords')
# try:
#     nltk.data.find('tokenizers/punkt_tab')
# except LookupError:
#     nltk.download('punkt_tab')
# try:
#     nltk.data.find('corpora/wordnet')
# except LookupError:
#     nltk.download('wordnet')

# # Add project root to Python path
# project_root = Path(__file__).parent.parent
# sys.path.append(str(project_root))

# from src.models.hybrid_model import HybridFakeNewsDetector
# from src.config.config import *
# from src.data.preprocessor import TextPreprocessor

# # Page config is set in main app.py

# @st.cache_resource
# def load_model_and_tokenizer():
#     """Load the model and tokenizer (cached)."""
#     # Initialize model
#     model = HybridFakeNewsDetector(
#         bert_model_name=BERT_MODEL_NAME,
#         lstm_hidden_size=LSTM_HIDDEN_SIZE,
#         lstm_num_layers=LSTM_NUM_LAYERS,
#         dropout_rate=DROPOUT_RATE
#     )
    
#     # Load trained weights
#     state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
    
#     # Filter out unexpected keys
#     model_state_dict = model.state_dict()
#     filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
    
#     # Load the filtered state dict
#     model.load_state_dict(filtered_state_dict, strict=False)
#     model.eval()
    
#     # Initialize tokenizer
#     tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
    
#     return model, tokenizer

# @st.cache_resource
# def get_preprocessor():
#     """Get the text preprocessor (cached)."""
#     return TextPreprocessor()

# def predict_news(text):
#     """Predict if the given news is fake or real."""
#     # Get model, tokenizer, and preprocessor from cache
#     model, tokenizer = load_model_and_tokenizer()
#     preprocessor = get_preprocessor()
    
#     # Preprocess text
#     processed_text = preprocessor.preprocess_text(text)
    
#     # Tokenize
#     encoding = tokenizer.encode_plus(
#         processed_text,
#         add_special_tokens=True,
#         max_length=MAX_SEQUENCE_LENGTH,
#         padding='max_length',
#         truncation=True,
#         return_attention_mask=True,
#         return_tensors='pt'
#     )
    
#     # Get prediction
#     with torch.no_grad():
#         outputs = model(
#             encoding['input_ids'],
#             encoding['attention_mask']
#         )
#         probabilities = torch.softmax(outputs['logits'], dim=1)
#         prediction = torch.argmax(outputs['logits'], dim=1)
#         attention_weights = outputs['attention_weights']
    
#     # Convert attention weights to numpy and get the first sequence
#     attention_weights_np = attention_weights[0].cpu().numpy()
    
#     return {
#         'prediction': prediction.item(),
#         'label': 'FAKE' if prediction.item() == 1 else 'REAL',
#         'confidence': torch.max(probabilities, dim=1)[0].item(),
#         'probabilities': {
#             'REAL': probabilities[0][0].item(),
#             'FAKE': probabilities[0][1].item()
#         },
#         'attention_weights': attention_weights_np
#     }

# def plot_confidence(probabilities):
#     """Plot prediction confidence."""
#     fig = go.Figure(data=[
#         go.Bar(
#             x=list(probabilities.keys()),
#             y=list(probabilities.values()),
#             text=[f'{p:.2%}' for p in probabilities.values()],
#             textposition='auto',
#         )
#     ])
    
#     fig.update_layout(
#         title='Prediction Confidence',
#         xaxis_title='Class',
#         yaxis_title='Probability',
#         yaxis_range=[0, 1]
#     )
    
#     return fig

# def plot_attention(text, attention_weights):
#     """Plot attention weights."""
#     tokens = text.split()
#     attention_weights = attention_weights[:len(tokens)]  # Truncate to match tokens
    
#     # Ensure attention weights are in the correct format
#     if isinstance(attention_weights, (list, np.ndarray)):
#         attention_weights = np.array(attention_weights).flatten()
    
#     # Format weights for display
#     formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
    
#     fig = go.Figure(data=[
#         go.Bar(
#             x=tokens,
#             y=attention_weights,
#             text=formatted_weights,
#             textposition='auto',
#         )
#     ])
    
#     fig.update_layout(
#         title='Attention Weights',
#         xaxis_title='Tokens',
#         yaxis_title='Attention Weight',
#         xaxis_tickangle=45
#     )
    
#     return fig

# def main():
#     st.title("πŸ“° Fake News Detection System")
#     st.write("""
#     This application uses a hybrid deep learning model (BERT + BiLSTM + Attention) 
#     to detect fake news articles. Enter a news article below to analyze it.
#     """)
    
#     # Sidebar
#     st.sidebar.title("About")
#     st.sidebar.info("""
    
#     The model combines:
#     - BERT for contextual embeddings
#     - BiLSTM for sequence modeling
#     - Attention mechanism for interpretability
#     """)
    
#     # Main content
#     st.header("News Analysis")
    
#     # Text input
#     news_text = st.text_area(
#         "Enter the news article to analyze:",
#         height=200,
#         placeholder="Paste your news article here..."
#     )
    
#     if st.button("Analyze"):
#         if news_text:
#             with st.spinner("Analyzing the news article..."):
#                 # Get prediction
#                 result = predict_news(news_text)
                
#                 # Display result
#                 col1, col2 = st.columns(2)
                
#                 with col1:
#                     st.subheader("Prediction")
#                     if result['label'] == 'FAKE':
#                         st.error(f"πŸ”΄ This news is likely FAKE (Confidence: {result['confidence']:.2%})")
#                     else:
#                         st.success(f"🟒 This news is likely REAL (Confidence: {result['confidence']:.2%})")
                
#                 with col2:
#                     st.subheader("Confidence Scores")
#                     st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
                
#                 # Show attention visualization
#                 st.subheader("Attention Analysis")
#                 st.write("""
#                 The attention weights show which parts of the text the model focused on 
#                 while making its prediction. Higher weights indicate more important tokens.
#                 """)
#                 st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
                
#                 # Show model explanation
#                 st.subheader("Model Explanation")
#                 if result['label'] == 'FAKE':
#                     st.write("""
#                     The model identified this as fake news based on:
#                     - Linguistic patterns typical of fake news
#                     - Inconsistencies in the content
#                     - Attention weights on suspicious phrases
#                     """)
#                 else:
#                     st.write("""
#                     The model identified this as real news based on:
#                     - Credible language patterns
#                     - Consistent information
#                     - Attention weights on factual statements
#                     """)
#         else:
#             st.warning("Please enter a news article to analyze.")

# if __name__ == "__main__":
#     main() 


import streamlit as st
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import sys
import plotly.express as px
import plotly.graph_objects as go
from transformers import BertTokenizer
import nltk

# Download required NLTK data
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt')
try:
    nltk.data.find('corpora/stopwords')
except LookupError:
    nltk.download('stopwords')
try:
    nltk.data.find('tokenizers/punkt_tab')
except LookupError:
    nltk.download('punkt_tab')
try:
    nltk.data.find('corpora/wordnet')
except LookupError:
    nltk.download('wordnet')

# Add project root to Python path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))

from src.models.hybrid_model import HybridFakeNewsDetector
from src.config.config import *
from src.data.preprocessor import TextPreprocessor

@st.cache_resource
def load_model_and_tokenizer():
    """Load the model and tokenizer (cached)."""
    model = HybridFakeNewsDetector(
        bert_model_name=BERT_MODEL_NAME,
        lstm_hidden_size=LSTM_HIDDEN_SIZE,
        lstm_num_layers=LSTM_NUM_LAYERS,
        dropout_rate=DROPOUT_RATE
    )
    state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
    model_state_dict = model.state_dict()
    filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
    model.load_state_dict(filtered_state_dict, strict=False)
    model.eval()
    tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
    return model, tokenizer

@st.cache_resource
def get_preprocessor():
    """Get the text preprocessor (cached)."""
    return TextPreprocessor()

def predict_news(text):
    """Predict if the given news is fake or real."""
    model, tokenizer = load_model_and_tokenizer()
    preprocessor = get_preprocessor()
    processed_text = preprocessor.preprocess_text(text)
    encoding = tokenizer.encode_plus(
        processed_text,
        add_special_tokens=True,
        max_length=MAX_SEQUENCE_LENGTH,
        padding='max_length',
        truncation=True,
        return_attention_mask=True,
        return_tensors='pt'
    )
    with torch.no_grad():
        outputs = model(
            encoding['input_ids'],
            encoding['attention_mask']
        )
        probabilities = torch.softmax(outputs['logits'], dim=1)
        prediction = torch.argmax(outputs['logits'], dim=1)
        attention_weights = outputs['attention_weights']
    attention_weights_np = attention_weights[0].cpu().numpy()
    return {
        'prediction': prediction.item(),
        'label': 'FAKE' if prediction.item() == 1 else 'REAL',
        'confidence': torch.max(probabilities, dim=1)[0].item(),
        'probabilities': {
            'REAL': probabilities[0][0].item(),
            'FAKE': probabilities[0][1].item()
        },
        'attention_weights': attention_weights_np
    }

def plot_confidence(probabilities):
    """Plot prediction confidence."""
    fig = go.Figure(data=[
        go.Bar(
            x=list(probabilities.keys()),
            y=list(probabilities.values()),
            text=[f'{p:.2%}' for p in probabilities.values()],
            textposition='auto',
            marker_color=['#4B5EAA', '#FF6B6B']
        )
    ])
    fig.update_layout(
        title='Prediction Confidence',
        xaxis_title='Class',
        yaxis_title='Probability',
        yaxis_range=[0, 1],
        template='plotly_white'
    )
    return fig

def plot_attention(text, attention_weights):
    """Plot attention weights."""
    tokens = text.split()
    attention_weights = attention_weights[:len(tokens)]
    if isinstance(attention_weights, (list, np.ndarray)):
        attention_weights = np.array(attention_weights).flatten()
    formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
    fig = go.Figure(data=[
        go.Bar(
            x=tokens,
            y=attention_weights,
            text=formatted_weights,
            textposition='auto',
            marker_color='#4B5EAA'
        )
    ])
    fig.update_layout(
        title='Attention Weights',
        xaxis_title='Tokens',
        yaxis_title='Attention Weight',
        xaxis_tickangle=45,
        template='plotly_white'
    )
    return fig

def main():
    # Hero section
    st.markdown("""
    <div class="hero-section">
        <div style="display: flex; align-items: center; gap: 2rem;">
            <div style="flex: 1;">
                <h1 style="font-size: 2.5rem; color: #333333;">TrueCheck</h1>
                <p style="font-size: 1.2rem; color: #666666;">
                    Detect fake news with our advanced AI-powered system using BERT, BiLSTM, and Attention mechanisms.
                </p>
            </div>
            <div style="flex: 1;">
                <img src="https://img.freepik.com/free-vector/fake-news-concept-illustration_114360-3189.jpg" style="width: 100%; border-radius: 12px;" alt="Fake News Detection">
            </div>
        </div>
    </div>
    """, unsafe_allow_html=True)

    # Sidebar info
    st.sidebar.markdown("---")
    st.sidebar.header("About TrueCheck")
    st.sidebar.markdown("""
    <div style="font-size: 0.9rem; color: #666666;">
        <p>TrueCheck uses a hybrid deep learning model combining:</p>
        <ul>
            <li>BERT for contextual embeddings</li>
            <li>BiLSTM for sequence modeling</li>
            <li>Attention mechanism for interpretability</li>
        </ul>
    </div>
    """, unsafe_allow_html=True)

    # Main content
    st.header("Analyze News")
    news_text = st.text_area(
        "Enter the news article to analyze:",
        height=200,
        placeholder="Paste your news article here..."
    )
    
    if st.button("Analyze", key="analyze_button"):
        if news_text:
            with st.spinner("Analyzing the news article..."):
                result = predict_news(news_text)
                col1, col2 = st.columns([1, 1], gap="large")
                
                with col1:
                    st.markdown("### Prediction")
                    if result['label'] == 'FAKE':
                        st.markdown(f'<div class="flash-message error-message">πŸ”΄ This news is likely FAKE (Confidence: {result["confidence"]:.2%})</div>', unsafe_allow_html=True)
                    else:
                        st.markdown(f'<div class="flash-message success-message">🟒 This news is likely REAL (Confidence: {result["confidence"]:.2%})</div>', unsafe_allow_html=True)
                
                with col2:
                    st.markdown("### Confidence Scores")
                    st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
                
                st.markdown("### Attention Analysis")
                st.markdown("""
                <p style="color: #666666;">
                    The attention weights show which parts of the text the model focused on while making its prediction. Higher weights indicate more important tokens.
                </p>
                """, unsafe_allow_html=True)
                st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
                
                st.markdown("### Model Explanation")
                if result['label'] == 'FAKE':
                    st.markdown("""
                    <div style="background-color: #F4F7FA; padding: 1rem; border-radius: 8px;">
                        <p>The model identified this as fake news based on:</p>
                        <ul>
                            <li>Linguistic patterns typical of fake news</li>
                            <li>Inconsistencies in the content</li>
                            <li>Attention weights on suspicious phrases</li>
                        </ul>
                    </div>
                    """, unsafe_allow_html=True)
                else:
                    st.markdown("""
                    <div style="background-color: #F4F7FA; padding: 1rem; border-radius: 8px;">
                        <p>The model identified this as real news based on:</p>
                        <ul>
                            <li>Credible language patterns</li>
                            <li>Consistent information</li>
                            <li>Attention weights on factual statements</li>
                        </ul>
                    </div>
                    """, unsafe_allow_html=True)
        else:
            st.markdown('<div class="flash-message error-message">Please enter a news article to analyze.</div>', unsafe_allow_html=True)

if __name__ == "__main__":
    main()