Spaces:
Sleeping
Sleeping
File size: 16,753 Bytes
7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc 469c254 7bb7bdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
# import streamlit as st
# import torch
# import pandas as pd
# import numpy as np
# from pathlib import Path
# import sys
# import plotly.express as px
# import plotly.graph_objects as go
# from transformers import BertTokenizer
# import nltk
# # Download required NLTK data
# try:
# nltk.data.find('tokenizers/punkt')
# except LookupError:
# nltk.download('punkt')
# try:
# nltk.data.find('corpora/stopwords')
# except LookupError:
# nltk.download('stopwords')
# try:
# nltk.data.find('tokenizers/punkt_tab')
# except LookupError:
# nltk.download('punkt_tab')
# try:
# nltk.data.find('corpora/wordnet')
# except LookupError:
# nltk.download('wordnet')
# # Add project root to Python path
# project_root = Path(__file__).parent.parent
# sys.path.append(str(project_root))
# from src.models.hybrid_model import HybridFakeNewsDetector
# from src.config.config import *
# from src.data.preprocessor import TextPreprocessor
# # Page config is set in main app.py
# @st.cache_resource
# def load_model_and_tokenizer():
# """Load the model and tokenizer (cached)."""
# # Initialize model
# model = HybridFakeNewsDetector(
# bert_model_name=BERT_MODEL_NAME,
# lstm_hidden_size=LSTM_HIDDEN_SIZE,
# lstm_num_layers=LSTM_NUM_LAYERS,
# dropout_rate=DROPOUT_RATE
# )
# # Load trained weights
# state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
# # Filter out unexpected keys
# model_state_dict = model.state_dict()
# filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
# # Load the filtered state dict
# model.load_state_dict(filtered_state_dict, strict=False)
# model.eval()
# # Initialize tokenizer
# tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
# return model, tokenizer
# @st.cache_resource
# def get_preprocessor():
# """Get the text preprocessor (cached)."""
# return TextPreprocessor()
# def predict_news(text):
# """Predict if the given news is fake or real."""
# # Get model, tokenizer, and preprocessor from cache
# model, tokenizer = load_model_and_tokenizer()
# preprocessor = get_preprocessor()
# # Preprocess text
# processed_text = preprocessor.preprocess_text(text)
# # Tokenize
# encoding = tokenizer.encode_plus(
# processed_text,
# add_special_tokens=True,
# max_length=MAX_SEQUENCE_LENGTH,
# padding='max_length',
# truncation=True,
# return_attention_mask=True,
# return_tensors='pt'
# )
# # Get prediction
# with torch.no_grad():
# outputs = model(
# encoding['input_ids'],
# encoding['attention_mask']
# )
# probabilities = torch.softmax(outputs['logits'], dim=1)
# prediction = torch.argmax(outputs['logits'], dim=1)
# attention_weights = outputs['attention_weights']
# # Convert attention weights to numpy and get the first sequence
# attention_weights_np = attention_weights[0].cpu().numpy()
# return {
# 'prediction': prediction.item(),
# 'label': 'FAKE' if prediction.item() == 1 else 'REAL',
# 'confidence': torch.max(probabilities, dim=1)[0].item(),
# 'probabilities': {
# 'REAL': probabilities[0][0].item(),
# 'FAKE': probabilities[0][1].item()
# },
# 'attention_weights': attention_weights_np
# }
# def plot_confidence(probabilities):
# """Plot prediction confidence."""
# fig = go.Figure(data=[
# go.Bar(
# x=list(probabilities.keys()),
# y=list(probabilities.values()),
# text=[f'{p:.2%}' for p in probabilities.values()],
# textposition='auto',
# )
# ])
# fig.update_layout(
# title='Prediction Confidence',
# xaxis_title='Class',
# yaxis_title='Probability',
# yaxis_range=[0, 1]
# )
# return fig
# def plot_attention(text, attention_weights):
# """Plot attention weights."""
# tokens = text.split()
# attention_weights = attention_weights[:len(tokens)] # Truncate to match tokens
# # Ensure attention weights are in the correct format
# if isinstance(attention_weights, (list, np.ndarray)):
# attention_weights = np.array(attention_weights).flatten()
# # Format weights for display
# formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
# fig = go.Figure(data=[
# go.Bar(
# x=tokens,
# y=attention_weights,
# text=formatted_weights,
# textposition='auto',
# )
# ])
# fig.update_layout(
# title='Attention Weights',
# xaxis_title='Tokens',
# yaxis_title='Attention Weight',
# xaxis_tickangle=45
# )
# return fig
# def main():
# st.title("π° Fake News Detection System")
# st.write("""
# This application uses a hybrid deep learning model (BERT + BiLSTM + Attention)
# to detect fake news articles. Enter a news article below to analyze it.
# """)
# # Sidebar
# st.sidebar.title("About")
# st.sidebar.info("""
# The model combines:
# - BERT for contextual embeddings
# - BiLSTM for sequence modeling
# - Attention mechanism for interpretability
# """)
# # Main content
# st.header("News Analysis")
# # Text input
# news_text = st.text_area(
# "Enter the news article to analyze:",
# height=200,
# placeholder="Paste your news article here..."
# )
# if st.button("Analyze"):
# if news_text:
# with st.spinner("Analyzing the news article..."):
# # Get prediction
# result = predict_news(news_text)
# # Display result
# col1, col2 = st.columns(2)
# with col1:
# st.subheader("Prediction")
# if result['label'] == 'FAKE':
# st.error(f"π΄ This news is likely FAKE (Confidence: {result['confidence']:.2%})")
# else:
# st.success(f"π’ This news is likely REAL (Confidence: {result['confidence']:.2%})")
# with col2:
# st.subheader("Confidence Scores")
# st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
# # Show attention visualization
# st.subheader("Attention Analysis")
# st.write("""
# The attention weights show which parts of the text the model focused on
# while making its prediction. Higher weights indicate more important tokens.
# """)
# st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
# # Show model explanation
# st.subheader("Model Explanation")
# if result['label'] == 'FAKE':
# st.write("""
# The model identified this as fake news based on:
# - Linguistic patterns typical of fake news
# - Inconsistencies in the content
# - Attention weights on suspicious phrases
# """)
# else:
# st.write("""
# The model identified this as real news based on:
# - Credible language patterns
# - Consistent information
# - Attention weights on factual statements
# """)
# else:
# st.warning("Please enter a news article to analyze.")
# if __name__ == "__main__":
# main()
import streamlit as st
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import sys
import plotly.express as px
import plotly.graph_objects as go
from transformers import BertTokenizer
import nltk
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('stopwords')
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
try:
nltk.data.find('corpora/wordnet')
except LookupError:
nltk.download('wordnet')
# Add project root to Python path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))
from src.models.hybrid_model import HybridFakeNewsDetector
from src.config.config import *
from src.data.preprocessor import TextPreprocessor
@st.cache_resource
def load_model_and_tokenizer():
"""Load the model and tokenizer (cached)."""
model = HybridFakeNewsDetector(
bert_model_name=BERT_MODEL_NAME,
lstm_hidden_size=LSTM_HIDDEN_SIZE,
lstm_num_layers=LSTM_NUM_LAYERS,
dropout_rate=DROPOUT_RATE
)
state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
model_state_dict = model.state_dict()
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
model.load_state_dict(filtered_state_dict, strict=False)
model.eval()
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
return model, tokenizer
@st.cache_resource
def get_preprocessor():
"""Get the text preprocessor (cached)."""
return TextPreprocessor()
def predict_news(text):
"""Predict if the given news is fake or real."""
model, tokenizer = load_model_and_tokenizer()
preprocessor = get_preprocessor()
processed_text = preprocessor.preprocess_text(text)
encoding = tokenizer.encode_plus(
processed_text,
add_special_tokens=True,
max_length=MAX_SEQUENCE_LENGTH,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
with torch.no_grad():
outputs = model(
encoding['input_ids'],
encoding['attention_mask']
)
probabilities = torch.softmax(outputs['logits'], dim=1)
prediction = torch.argmax(outputs['logits'], dim=1)
attention_weights = outputs['attention_weights']
attention_weights_np = attention_weights[0].cpu().numpy()
return {
'prediction': prediction.item(),
'label': 'FAKE' if prediction.item() == 1 else 'REAL',
'confidence': torch.max(probabilities, dim=1)[0].item(),
'probabilities': {
'REAL': probabilities[0][0].item(),
'FAKE': probabilities[0][1].item()
},
'attention_weights': attention_weights_np
}
def plot_confidence(probabilities):
"""Plot prediction confidence."""
fig = go.Figure(data=[
go.Bar(
x=list(probabilities.keys()),
y=list(probabilities.values()),
text=[f'{p:.2%}' for p in probabilities.values()],
textposition='auto',
marker_color=['#4B5EAA', '#FF6B6B']
)
])
fig.update_layout(
title='Prediction Confidence',
xaxis_title='Class',
yaxis_title='Probability',
yaxis_range=[0, 1],
template='plotly_white'
)
return fig
def plot_attention(text, attention_weights):
"""Plot attention weights."""
tokens = text.split()
attention_weights = attention_weights[:len(tokens)]
if isinstance(attention_weights, (list, np.ndarray)):
attention_weights = np.array(attention_weights).flatten()
formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
fig = go.Figure(data=[
go.Bar(
x=tokens,
y=attention_weights,
text=formatted_weights,
textposition='auto',
marker_color='#4B5EAA'
)
])
fig.update_layout(
title='Attention Weights',
xaxis_title='Tokens',
yaxis_title='Attention Weight',
xaxis_tickangle=45,
template='plotly_white'
)
return fig
def main():
# Hero section
st.markdown("""
<div class="hero-section">
<div style="display: flex; align-items: center; gap: 2rem;">
<div style="flex: 1;">
<h1 style="font-size: 2.5rem; color: #333333;">TrueCheck</h1>
<p style="font-size: 1.2rem; color: #666666;">
Detect fake news with our advanced AI-powered system using BERT, BiLSTM, and Attention mechanisms.
</p>
</div>
<div style="flex: 1;">
<img src="https://img.freepik.com/free-vector/fake-news-concept-illustration_114360-3189.jpg" style="width: 100%; border-radius: 12px;" alt="Fake News Detection">
</div>
</div>
</div>
""", unsafe_allow_html=True)
# Sidebar info
st.sidebar.markdown("---")
st.sidebar.header("About TrueCheck")
st.sidebar.markdown("""
<div style="font-size: 0.9rem; color: #666666;">
<p>TrueCheck uses a hybrid deep learning model combining:</p>
<ul>
<li>BERT for contextual embeddings</li>
<li>BiLSTM for sequence modeling</li>
<li>Attention mechanism for interpretability</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Main content
st.header("Analyze News")
news_text = st.text_area(
"Enter the news article to analyze:",
height=200,
placeholder="Paste your news article here..."
)
if st.button("Analyze", key="analyze_button"):
if news_text:
with st.spinner("Analyzing the news article..."):
result = predict_news(news_text)
col1, col2 = st.columns([1, 1], gap="large")
with col1:
st.markdown("### Prediction")
if result['label'] == 'FAKE':
st.markdown(f'<div class="flash-message error-message">π΄ This news is likely FAKE (Confidence: {result["confidence"]:.2%})</div>', unsafe_allow_html=True)
else:
st.markdown(f'<div class="flash-message success-message">π’ This news is likely REAL (Confidence: {result["confidence"]:.2%})</div>', unsafe_allow_html=True)
with col2:
st.markdown("### Confidence Scores")
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
st.markdown("### Attention Analysis")
st.markdown("""
<p style="color: #666666;">
The attention weights show which parts of the text the model focused on while making its prediction. Higher weights indicate more important tokens.
</p>
""", unsafe_allow_html=True)
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
st.markdown("### Model Explanation")
if result['label'] == 'FAKE':
st.markdown("""
<div style="background-color: #F4F7FA; padding: 1rem; border-radius: 8px;">
<p>The model identified this as fake news based on:</p>
<ul>
<li>Linguistic patterns typical of fake news</li>
<li>Inconsistencies in the content</li>
<li>Attention weights on suspicious phrases</li>
</ul>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div style="background-color: #F4F7FA; padding: 1rem; border-radius: 8px;">
<p>The model identified this as real news based on:</p>
<ul>
<li>Credible language patterns</li>
<li>Consistent information</li>
<li>Attention weights on factual statements</li>
</ul>
</div>
""", unsafe_allow_html=True)
else:
st.markdown('<div class="flash-message error-message">Please enter a news article to analyze.</div>', unsafe_allow_html=True)
if __name__ == "__main__":
main() |