File size: 6,192 Bytes
469c254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from pathlib import Path
import json
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def plot_training_history(history: dict, save_path: Path = None):
    """
    Plot training and validation metrics over epochs.
    
    Args:
        history: Dictionary containing training history
        save_path: Path to save the plot
    """
    plt.figure(figsize=(12, 5))
    
    # Plot loss
    plt.subplot(1, 2, 1)
    plt.plot(history['train_loss'], label='Training Loss')
    plt.plot(history['val_loss'], label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    
    # Plot metrics
    plt.subplot(1, 2, 2)
    metrics = ['accuracy', 'precision', 'recall', 'f1']
    for metric in metrics:
        values = [epoch_metrics[metric] for epoch_metrics in history['val_metrics']]
        plt.plot(values, label=metric.capitalize())
    
    plt.title('Validation Metrics')
    plt.xlabel('Epoch')
    plt.ylabel('Score')
    plt.legend()
    
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path)
        logger.info(f"Training history plot saved to {save_path}")
    
    plt.close()

def plot_confusion_matrix(y_true: np.ndarray, y_pred: np.ndarray, save_path: Path = None):
    """
    Plot confusion matrix for model predictions.
    
    Args:
        y_true: True labels
        y_pred: Predicted labels
        save_path: Path to save the plot
    """
    from sklearn.metrics import confusion_matrix
    
    cm = confusion_matrix(y_true, y_pred)
    plt.figure(figsize=(8, 6))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
    plt.title('Confusion Matrix')
    plt.xlabel('Predicted Label')
    plt.ylabel('True Label')
    
    if save_path:
        plt.savefig(save_path)
        logger.info(f"Confusion matrix plot saved to {save_path}")
    
    plt.close()

def plot_attention_weights(text: str, attention_weights: np.ndarray, save_path: Path = None):
    """
    Plot attention weights for a given text.
    
    Args:
        text: Input text
        attention_weights: Attention weights for each token
        save_path: Path to save the plot
    """
    tokens = text.split()
    plt.figure(figsize=(12, 4))
    
    # Plot attention weights
    plt.bar(range(len(tokens)), attention_weights)
    plt.xticks(range(len(tokens)), tokens, rotation=45, ha='right')
    plt.title('Attention Weights')
    plt.xlabel('Tokens')
    plt.ylabel('Attention Weight')
    
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path)
        logger.info(f"Attention weights plot saved to {save_path}")
    
    plt.close()

def plot_model_comparison(metrics: dict, save_path: Path = None):
    """
    Plot comparison of different models' performance.
    
    Args:
        metrics: Dictionary containing model metrics
        save_path: Path to save the plot
    """
    models = list(metrics.keys())
    metric_names = ['accuracy', 'precision', 'recall', 'f1']
    
    plt.figure(figsize=(10, 6))
    x = np.arange(len(models))
    width = 0.2
    
    for i, metric in enumerate(metric_names):
        values = [metrics[model][metric] for model in models]
        plt.bar(x + i*width, values, width, label=metric.capitalize())
    
    plt.title('Model Performance Comparison')
    plt.xlabel('Models')
    plt.ylabel('Score')
    plt.xticks(x + width*1.5, models, rotation=45)
    plt.legend()
    
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path)
        logger.info(f"Model comparison plot saved to {save_path}")
    
    plt.close()

def plot_feature_importance(feature_importance: dict, save_path: Path = None):
    """
    Plot feature importance scores.
    
    Args:
        feature_importance: Dictionary containing feature importance scores
        save_path: Path to save the plot
    """
    features = list(feature_importance.keys())
    importance = list(feature_importance.values())
    
    # Sort by importance
    sorted_idx = np.argsort(importance)
    features = [features[i] for i in sorted_idx]
    importance = [importance[i] for i in sorted_idx]
    
    plt.figure(figsize=(10, 6))
    plt.barh(range(len(features)), importance)
    plt.yticks(range(len(features)), features)
    plt.title('Feature Importance')
    plt.xlabel('Importance Score')
    
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path)
        logger.info(f"Feature importance plot saved to {save_path}")
    
    plt.close()

def main():
    # Create visualization directory
    vis_dir = Path(__file__).parent.parent.parent / "visualizations"
    vis_dir.mkdir(exist_ok=True)
    
    # Example usage
    history = {
        'train_loss': [0.5, 0.4, 0.3],
        'val_loss': [0.45, 0.35, 0.25],
        'val_metrics': [
            {'accuracy': 0.8, 'precision': 0.75, 'recall': 0.85, 'f1': 0.8},
            {'accuracy': 0.85, 'precision': 0.8, 'recall': 0.9, 'f1': 0.85},
            {'accuracy': 0.9, 'precision': 0.85, 'recall': 0.95, 'f1': 0.9}
        ]
    }
    
    # Plot training history
    plot_training_history(history, save_path=vis_dir / "training_history.png")
    
    # Example confusion matrix
    y_true = np.array([0, 1, 0, 1, 1, 0])
    y_pred = np.array([0, 1, 0, 0, 1, 0])
    plot_confusion_matrix(y_true, y_pred, save_path=vis_dir / "confusion_matrix.png")
    
    # Example model comparison
    metrics = {
        'BERT': {'accuracy': 0.85, 'precision': 0.82, 'recall': 0.88, 'f1': 0.85},
        'BiLSTM': {'accuracy': 0.78, 'precision': 0.75, 'recall': 0.81, 'f1': 0.78},
        'Hybrid': {'accuracy': 0.92, 'precision': 0.9, 'recall': 0.94, 'f1': 0.92}
    }
    plot_model_comparison(metrics, save_path=vis_dir / "model_comparison.png")
    
    # Example feature importance
    feature_importance = {
        'BERT': 0.4,
        'BiLSTM': 0.3,
        'Attention': 0.2,
        'TF-IDF': 0.1
    }
    plot_feature_importance(feature_importance, save_path=vis_dir / "feature_importance.png")

if __name__ == "__main__":
    main()