Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# import torch | |
# import pandas as pd | |
# import numpy as np | |
# from pathlib import Path | |
# import sys | |
# import plotly.express as px | |
# import plotly.graph_objects as go | |
# from transformers import BertTokenizer | |
# import nltk | |
# # Download required NLTK data | |
# try: | |
# nltk.data.find('tokenizers/punkt') | |
# except LookupError: | |
# nltk.download('punkt') | |
# try: | |
# nltk.data.find('corpora/stopwords') | |
# except LookupError: | |
# nltk.download('stopwords') | |
# try: | |
# nltk.data.find('tokenizers/punkt_tab') | |
# except LookupError: | |
# nltk.download('punkt_tab') | |
# try: | |
# nltk.data.find('corpora/wordnet') | |
# except LookupError: | |
# nltk.download('wordnet') | |
# # Add project root to Python path | |
# project_root = Path(__file__).parent.parent | |
# sys.path.append(str(project_root)) | |
# from src.models.hybrid_model import HybridFakeNewsDetector | |
# from src.config.config import * | |
# from src.data.preprocessor import TextPreprocessor | |
# # Page config is set in main app.py | |
# @st.cache_resource | |
# def load_model_and_tokenizer(): | |
# """Load the model and tokenizer (cached).""" | |
# # Initialize model | |
# model = HybridFakeNewsDetector( | |
# bert_model_name=BERT_MODEL_NAME, | |
# lstm_hidden_size=LSTM_HIDDEN_SIZE, | |
# lstm_num_layers=LSTM_NUM_LAYERS, | |
# dropout_rate=DROPOUT_RATE | |
# ) | |
# # Load trained weights | |
# state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu')) | |
# # Filter out unexpected keys | |
# model_state_dict = model.state_dict() | |
# filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict} | |
# # Load the filtered state dict | |
# model.load_state_dict(filtered_state_dict, strict=False) | |
# model.eval() | |
# # Initialize tokenizer | |
# tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME) | |
# return model, tokenizer | |
# @st.cache_resource | |
# def get_preprocessor(): | |
# """Get the text preprocessor (cached).""" | |
# return TextPreprocessor() | |
# def predict_news(text): | |
# """Predict if the given news is fake or real.""" | |
# # Get model, tokenizer, and preprocessor from cache | |
# model, tokenizer = load_model_and_tokenizer() | |
# preprocessor = get_preprocessor() | |
# # Preprocess text | |
# processed_text = preprocessor.preprocess_text(text) | |
# # Tokenize | |
# encoding = tokenizer.encode_plus( | |
# processed_text, | |
# add_special_tokens=True, | |
# max_length=MAX_SEQUENCE_LENGTH, | |
# padding='max_length', | |
# truncation=True, | |
# return_attention_mask=True, | |
# return_tensors='pt' | |
# ) | |
# # Get prediction | |
# with torch.no_grad(): | |
# outputs = model( | |
# encoding['input_ids'], | |
# encoding['attention_mask'] | |
# ) | |
# probabilities = torch.softmax(outputs['logits'], dim=1) | |
# prediction = torch.argmax(outputs['logits'], dim=1) | |
# attention_weights = outputs['attention_weights'] | |
# # Convert attention weights to numpy and get the first sequence | |
# attention_weights_np = attention_weights[0].cpu().numpy() | |
# return { | |
# 'prediction': prediction.item(), | |
# 'label': 'FAKE' if prediction.item() == 1 else 'REAL', | |
# 'confidence': torch.max(probabilities, dim=1)[0].item(), | |
# 'probabilities': { | |
# 'REAL': probabilities[0][0].item(), | |
# 'FAKE': probabilities[0][1].item() | |
# }, | |
# 'attention_weights': attention_weights_np | |
# } | |
# def plot_confidence(probabilities): | |
# """Plot prediction confidence.""" | |
# fig = go.Figure(data=[ | |
# go.Bar( | |
# x=list(probabilities.keys()), | |
# y=list(probabilities.values()), | |
# text=[f'{p:.2%}' for p in probabilities.values()], | |
# textposition='auto', | |
# ) | |
# ]) | |
# fig.update_layout( | |
# title='Prediction Confidence', | |
# xaxis_title='Class', | |
# yaxis_title='Probability', | |
# yaxis_range=[0, 1] | |
# ) | |
# return fig | |
# def plot_attention(text, attention_weights): | |
# """Plot attention weights.""" | |
# tokens = text.split() | |
# attention_weights = attention_weights[:len(tokens)] # Truncate to match tokens | |
# # Ensure attention weights are in the correct format | |
# if isinstance(attention_weights, (list, np.ndarray)): | |
# attention_weights = np.array(attention_weights).flatten() | |
# # Format weights for display | |
# formatted_weights = [f'{float(w):.2f}' for w in attention_weights] | |
# fig = go.Figure(data=[ | |
# go.Bar( | |
# x=tokens, | |
# y=attention_weights, | |
# text=formatted_weights, | |
# textposition='auto', | |
# ) | |
# ]) | |
# fig.update_layout( | |
# title='Attention Weights', | |
# xaxis_title='Tokens', | |
# yaxis_title='Attention Weight', | |
# xaxis_tickangle=45 | |
# ) | |
# return fig | |
# def main(): | |
# st.title("π° Fake News Detection System") | |
# st.write(""" | |
# This application uses a hybrid deep learning model (BERT + BiLSTM + Attention) | |
# to detect fake news articles. Enter a news article below to analyze it. | |
# """) | |
# # Sidebar | |
# st.sidebar.title("About") | |
# st.sidebar.info(""" | |
# The model combines: | |
# - BERT for contextual embeddings | |
# - BiLSTM for sequence modeling | |
# - Attention mechanism for interpretability | |
# """) | |
# # Main content | |
# st.header("News Analysis") | |
# # Text input | |
# news_text = st.text_area( | |
# "Enter the news article to analyze:", | |
# height=200, | |
# placeholder="Paste your news article here..." | |
# ) | |
# if st.button("Analyze"): | |
# if news_text: | |
# with st.spinner("Analyzing the news article..."): | |
# # Get prediction | |
# result = predict_news(news_text) | |
# # Display result | |
# col1, col2 = st.columns(2) | |
# with col1: | |
# st.subheader("Prediction") | |
# if result['label'] == 'FAKE': | |
# st.error(f"π΄ This news is likely FAKE (Confidence: {result['confidence']:.2%})") | |
# else: | |
# st.success(f"π’ This news is likely REAL (Confidence: {result['confidence']:.2%})") | |
# with col2: | |
# st.subheader("Confidence Scores") | |
# st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True) | |
# # Show attention visualization | |
# st.subheader("Attention Analysis") | |
# st.write(""" | |
# The attention weights show which parts of the text the model focused on | |
# while making its prediction. Higher weights indicate more important tokens. | |
# """) | |
# st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True) | |
# # Show model explanation | |
# st.subheader("Model Explanation") | |
# if result['label'] == 'FAKE': | |
# st.write(""" | |
# The model identified this as fake news based on: | |
# - Linguistic patterns typical of fake news | |
# - Inconsistencies in the content | |
# - Attention weights on suspicious phrases | |
# """) | |
# else: | |
# st.write(""" | |
# The model identified this as real news based on: | |
# - Credible language patterns | |
# - Consistent information | |
# - Attention weights on factual statements | |
# """) | |
# else: | |
# st.warning("Please enter a news article to analyze.") | |
# if __name__ == "__main__": | |
# main() | |
import streamlit as st | |
import torch | |
import pandas as pd | |
import numpy as np | |
from pathlib import Path | |
import sys | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from transformers import BertTokenizer | |
import nltk | |
# Download required NLTK data | |
try: | |
nltk.data.find('tokenizers/punkt') | |
except LookupError: | |
nltk.download('punkt') | |
try: | |
nltk.data.find('corpora/stopwords') | |
except LookupError: | |
nltk.download('stopwords') | |
try: | |
nltk.data.find('tokenizers/punkt_tab') | |
except LookupError: | |
nltk.download('punkt_tab') | |
try: | |
nltk.data.find('corpora/wordnet') | |
except LookupError: | |
nltk.download('wordnet') | |
# Add project root to Python path | |
project_root = Path(__file__).parent.parent | |
sys.path.append(str(project_root)) | |
from src.models.hybrid_model import HybridFakeNewsDetector | |
from src.config.config import * | |
from src.data.preprocessor import TextPreprocessor | |
# REMOVED st.set_page_config() - This should only be called once in the main entry point | |
# Custom CSS for modern styling | |
st.markdown(""" | |
<style> | |
/* Import Google Fonts */ | |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); | |
/* Global Styles */ | |
.main { | |
padding: 0; | |
} | |
.stApp { | |
font-family: 'Inter', sans-serif; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
min-height: 100vh; | |
} | |
/* Hide Streamlit elements */ | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
.stDeployButton {display: none;} | |
header {visibility: hidden;} | |
/* Hero Section */ | |
.hero-container { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
padding: 4rem 2rem; | |
text-align: center; | |
color: white; | |
margin-bottom: 2rem; | |
} | |
.hero-title { | |
font-size: 4rem; | |
font-weight: 700; | |
margin-bottom: 1rem; | |
text-shadow: 2px 2px 4px rgba(0,0,0,0.3); | |
background: linear-gradient(45deg, #fff, #e0e7ff); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
background-clip: text; | |
} | |
.hero-subtitle { | |
font-size: 1.3rem; | |
font-weight: 400; | |
margin-bottom: 2rem; | |
opacity: 0.9; | |
max-width: 600px; | |
margin-left: auto; | |
margin-right: auto; | |
line-height: 1.6; | |
} | |
/* Features Section */ | |
.features-container { | |
background: white; | |
padding: 3rem 2rem; | |
margin: 2rem 0; | |
border-radius: 20px; | |
box-shadow: 0 20px 40px rgba(0,0,0,0.1); | |
} | |
.features-grid { | |
display: grid; | |
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); | |
gap: 2rem; | |
margin-top: 2rem; | |
} | |
.feature-card { | |
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%); | |
padding: 2rem; | |
border-radius: 16px; | |
text-align: center; | |
transition: transform 0.3s ease, box-shadow 0.3s ease; | |
border: 1px solid #e2e8f0; | |
} | |
.feature-card:hover { | |
transform: translateY(-10px); | |
box-shadow: 0 20px 40px rgba(0,0,0,0.15); | |
} | |
.feature-icon { | |
font-size: 3rem; | |
margin-bottom: 1rem; | |
display: block; | |
} | |
.feature-title { | |
font-size: 1.2rem; | |
font-weight: 600; | |
color: #1e293b; | |
margin-bottom: 0.5rem; | |
} | |
.feature-description { | |
color: #64748b; | |
line-height: 1.5; | |
font-size: 0.95rem; | |
} | |
/* Main Content Section */ | |
.main-content { | |
background: white; | |
padding: 3rem; | |
border-radius: 20px; | |
box-shadow: 0 20px 40px rgba(0,0,0,0.1); | |
margin: 2rem 0; | |
} | |
.section-title { | |
font-size: 2.5rem; | |
font-weight: 700; | |
text-align: center; | |
color: #1e293b; | |
margin-bottom: 1rem; | |
} | |
.section-description { | |
text-align: center; | |
color: #64748b; | |
font-size: 1.1rem; | |
margin-bottom: 2rem; | |
max-width: 600px; | |
margin-left: auto; | |
margin-right: auto; | |
line-height: 1.6; | |
} | |
/* Input Section */ | |
.stTextArea > div > div > textarea { | |
border-radius: 12px; | |
border: 2px solid #e2e8f0; | |
padding: 1rem; | |
font-size: 1rem; | |
transition: border-color 0.3s ease; | |
font-family: 'Inter', sans-serif; | |
} | |
.stTextArea > div > div > textarea:focus { | |
border-color: #667eea; | |
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1); | |
} | |
/* Button Styling */ | |
.stButton > button { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
color: white; | |
border: none; | |
border-radius: 12px; | |
padding: 0.75rem 2rem; | |
font-size: 1.1rem; | |
font-weight: 600; | |
font-family: 'Inter', sans-serif; | |
transition: all 0.3s ease; | |
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4); | |
width: 100%; | |
} | |
.stButton > button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6); | |
} | |
/* Results Section */ | |
.result-card { | |
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%); | |
padding: 2rem; | |
border-radius: 16px; | |
margin: 1rem 0; | |
box-shadow: 0 4px 15px rgba(0,0,0,0.1); | |
} | |
.success-message { | |
background: linear-gradient(135deg, #dcfce7 0%, #bbf7d0 100%); | |
color: #166534; | |
padding: 1rem 1.5rem; | |
border-radius: 12px; | |
border-left: 4px solid #22c55e; | |
font-weight: 500; | |
margin: 1rem 0; | |
} | |
.error-message { | |
background: linear-gradient(135deg, #fef2f2 0%, #fecaca 100%); | |
color: #991b1b; | |
padding: 1rem 1.5rem; | |
border-radius: 12px; | |
border-left: 4px solid #ef4444; | |
font-weight: 500; | |
margin: 1rem 0; | |
} | |
/* Footer */ | |
.footer { | |
background: linear-gradient(135deg, #1e293b 0%, #334155 100%); | |
color: white; | |
padding: 3rem 2rem 2rem; | |
text-align: center; | |
margin-top: 4rem; | |
} | |
.footer-content { | |
max-width: 1200px; | |
margin: 0 auto; | |
} | |
.footer-title { | |
font-size: 1.5rem; | |
font-weight: 600; | |
margin-bottom: 1rem; | |
} | |
.footer-text { | |
color: #94a3b8; | |
margin-bottom: 2rem; | |
line-height: 1.6; | |
} | |
.footer-links { | |
display: flex; | |
justify-content: center; | |
gap: 2rem; | |
margin-bottom: 2rem; | |
} | |
.footer-link { | |
color: #94a3b8; | |
text-decoration: none; | |
transition: color 0.3s ease; | |
} | |
.footer-link:hover { | |
color: white; | |
} | |
.footer-bottom { | |
border-top: 1px solid #475569; | |
padding-top: 2rem; | |
color: #94a3b8; | |
font-size: 0.9rem; | |
} | |
/* Responsive Design */ | |
@media (max-width: 768px) { | |
.hero-title { | |
font-size: 3rem; | |
} | |
.features-grid { | |
grid-template-columns: 1fr; | |
} | |
.main-content { | |
padding: 2rem; | |
} | |
.footer-links { | |
flex-direction: column; | |
gap: 1rem; | |
} | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def load_model_and_tokenizer(): | |
"""Load the model and tokenizer (cached).""" | |
model = HybridFakeNewsDetector( | |
bert_model_name=BERT_MODEL_NAME, | |
lstm_hidden_size=LSTM_HIDDEN_SIZE, | |
lstm_num_layers=LSTM_NUM_LAYERS, | |
dropout_rate=DROPOUT_RATE | |
) | |
state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu')) | |
model_state_dict = model.state_dict() | |
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict} | |
model.load_state_dict(filtered_state_dict, strict=False) | |
model.eval() | |
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME) | |
return model, tokenizer | |
def get_preprocessor(): | |
"""Get the text preprocessor (cached).""" | |
return TextPreprocessor() | |
def predict_news(text): | |
"""Predict if the given news is fake or real.""" | |
model, tokenizer = load_model_and_tokenizer() | |
preprocessor = get_preprocessor() | |
processed_text = preprocessor.preprocess_text(text) | |
encoding = tokenizer.encode_plus( | |
processed_text, | |
add_special_tokens=True, | |
max_length=MAX_SEQUENCE_LENGTH, | |
padding='max_length', | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors='pt' | |
) | |
with torch.no_grad(): | |
outputs = model( | |
encoding['input_ids'], | |
encoding['attention_mask'] | |
) | |
probabilities = torch.softmax(outputs['logits'], dim=1) | |
prediction = torch.argmax(outputs['logits'], dim=1) | |
attention_weights = outputs['attention_weights'] | |
attention_weights_np = attention_weights[0].cpu().numpy() | |
return { | |
'prediction': prediction.item(), | |
'label': 'FAKE' if prediction.item() == 1 else 'REAL', | |
'confidence': torch.max(probabilities, dim=1)[0].item(), | |
'probabilities': { | |
'REAL': probabilities[0][0].item(), | |
'FAKE': probabilities[0][1].item() | |
}, | |
'attention_weights': attention_weights_np | |
} | |
def plot_confidence(probabilities): | |
"""Plot prediction confidence.""" | |
fig = go.Figure(data=[ | |
go.Bar( | |
x=list(probabilities.keys()), | |
y=list(probabilities.values()), | |
text=[f'{p:.2%}' for p in probabilities.values()], | |
textposition='auto', | |
marker_color=['#22c55e', '#ef4444'], | |
marker_line_color='rgba(0,0,0,0.1)', | |
marker_line_width=1 | |
) | |
]) | |
fig.update_layout( | |
title={ | |
'text': 'Prediction Confidence', | |
'x': 0.5, | |
'xanchor': 'center', | |
'font': {'size': 18, 'family': 'Inter'} | |
}, | |
xaxis_title='Class', | |
yaxis_title='Probability', | |
yaxis_range=[0, 1], | |
template='plotly_white', | |
plot_bgcolor='rgba(0,0,0,0)', | |
paper_bgcolor='rgba(0,0,0,0)', | |
font={'family': 'Inter'} | |
) | |
return fig | |
def plot_attention(text, attention_weights): | |
"""Plot attention weights.""" | |
tokens = text.split() | |
attention_weights = attention_weights[:len(tokens)] | |
if isinstance(attention_weights, (list, np.ndarray)): | |
attention_weights = np.array(attention_weights).flatten() | |
formatted_weights = [f'{float(w):.2f}' for w in attention_weights] | |
# Create color scale based on attention weights | |
colors = ['rgba(102, 126, 234, ' + str(0.3 + 0.7 * (w / max(attention_weights))) + ')' | |
for w in attention_weights] | |
fig = go.Figure(data=[ | |
go.Bar( | |
x=tokens, | |
y=attention_weights, | |
text=formatted_weights, | |
textposition='auto', | |
marker_color=colors, | |
marker_line_color='rgba(102, 126, 234, 0.8)', | |
marker_line_width=1 | |
) | |
]) | |
fig.update_layout( | |
title={ | |
'text': 'Attention Weights Analysis', | |
'x': 0.5, | |
'xanchor': 'center', | |
'font': {'size': 18, 'family': 'Inter'} | |
}, | |
xaxis_title='Tokens', | |
yaxis_title='Attention Weight', | |
xaxis_tickangle=45, | |
template='plotly_white', | |
plot_bgcolor='rgba(0,0,0,0)', | |
paper_bgcolor='rgba(0,0,0,0)', | |
font={'family': 'Inter'} | |
) | |
return fig | |
def main(): | |
# Hero Section | |
st.markdown(""" | |
<div class="hero-container"> | |
<h1 class="hero-title">π TrueCheck</h1> | |
<p class="hero-subtitle"> | |
Advanced AI-powered fake news detection using cutting-edge deep learning technology. | |
Get instant, accurate analysis of news articles with our hybrid BERT-BiLSTM model. | |
</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Features Section | |
st.markdown(""" | |
<div class="features-container"> | |
<h2 style="text-align: center; font-size: 2rem; font-weight: 700; color: #1e293b; margin-bottom: 1rem;"> | |
Why Choose TrueCheck? | |
</h2> | |
<p style="text-align: center; color: #64748b; font-size: 1.1rem; margin-bottom: 2rem;"> | |
Our advanced AI model combines multiple technologies for superior accuracy | |
</p> | |
<div class="features-grid"> | |
<div class="feature-card"> | |
<span class="feature-icon">π€</span> | |
<h3 class="feature-title">BERT Technology</h3> | |
<p class="feature-description"> | |
Utilizes state-of-the-art BERT transformer for deep contextual understanding of news content | |
</p> | |
</div> | |
<div class="feature-card"> | |
<span class="feature-icon">π§ </span> | |
<h3 class="feature-title">BiLSTM Processing</h3> | |
<p class="feature-description"> | |
Bidirectional LSTM networks capture sequential patterns and dependencies in text structure | |
</p> | |
</div> | |
<div class="feature-card"> | |
<span class="feature-icon">ποΈ</span> | |
<h3 class="feature-title">Attention Mechanism</h3> | |
<p class="feature-description"> | |
Advanced attention layers provide interpretable insights into model decision-making process | |
</p> | |
</div> | |
</div> | |
</div> | |
""", unsafe_allow_html=True) | |
# Main Content Section | |
st.markdown(""" | |
<div class="main-content"> | |
<h2 class="section-title">Analyze News Article</h2> | |
<p class="section-description"> | |
Paste any news article below and our AI will analyze it for authenticity. | |
Get detailed insights including confidence scores and attention analysis. | |
</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Input Section | |
col1, col2, col3 = st.columns([1, 3, 1]) | |
with col2: | |
news_text = st.text_area( | |
"", | |
height=200, | |
placeholder="π° Paste your news article here for analysis...", | |
key="news_input" | |
) | |
analyze_button = st.button("π Analyze Article", key="analyze_button") | |
if analyze_button: | |
if news_text: | |
with st.spinner("π€ Analyzing the news article..."): | |
result = predict_news(news_text) | |
# Results Section | |
st.markdown('<div class="main-content">', unsafe_allow_html=True) | |
col1, col2 = st.columns([1, 1], gap="large") | |
with col1: | |
st.markdown("### π Prediction Result") | |
if result['label'] == 'FAKE': | |
st.markdown(f''' | |
<div class="error-message"> | |
π΄ <strong>FAKE NEWS DETECTED</strong><br> | |
Confidence: {result["confidence"]:.2%} | |
</div> | |
''', unsafe_allow_html=True) | |
else: | |
st.markdown(f''' | |
<div class="success-message"> | |
π’ <strong>AUTHENTIC NEWS</strong><br> | |
Confidence: {result["confidence"]:.2%} | |
</div> | |
''', unsafe_allow_html=True) | |
with col2: | |
st.markdown("### π Confidence Breakdown") | |
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True) | |
st.markdown("### π― Attention Analysis") | |
st.markdown(""" | |
<p style="color: #64748b; text-align: center; margin-bottom: 2rem;"> | |
The visualization below shows which words our AI model focused on while making its prediction. | |
Darker colors indicate higher attention weights. | |
</p> | |
""", unsafe_allow_html=True) | |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True) | |
st.markdown("### π Detailed Analysis") | |
if result['label'] == 'FAKE': | |
st.markdown(""" | |
<div class="result-card"> | |
<h4 style="color: #ef4444; margin-bottom: 1rem;">β οΈ Fake News Indicators</h4> | |
<ul style="color: #64748b; line-height: 1.8;"> | |
<li><strong>Linguistic Patterns:</strong> The model detected language patterns commonly associated with misinformation</li> | |
<li><strong>Content Inconsistencies:</strong> Identified potential factual inconsistencies or misleading statements</li> | |
<li><strong>Attention Analysis:</strong> High attention weights on suspicious phrases and emotionally charged language</li> | |
<li><strong>Structural Analysis:</strong> Text structure and flow patterns typical of fabricated content</li> | |
</ul> | |
<p style="color: #7c3aed; font-weight: 500; margin-top: 1rem;"> | |
π‘ <strong>Recommendation:</strong> Verify this information through multiple reliable sources before sharing. | |
</p> | |
</div> | |
""", unsafe_allow_html=True) | |
else: | |
st.markdown(""" | |
<div class="result-card"> | |
<h4 style="color: #22c55e; margin-bottom: 1rem;">β Authentic News Indicators</h4> | |
<ul style="color: #64748b; line-height: 1.8;"> | |
<li><strong>Credible Language:</strong> Professional journalistic writing style and balanced reporting tone</li> | |
<li><strong>Factual Consistency:</strong> Information appears coherent and factually consistent</li> | |
<li><strong>Attention Analysis:</strong> Model focused on factual statements and objective reporting</li> | |
<li><strong>Structural Integrity:</strong> Well-structured content following standard news article format</li> | |
</ul> | |
<p style="color: #7c3aed; font-weight: 500; margin-top: 1rem;"> | |
π‘ <strong>Note:</strong> While likely authentic, always cross-reference important news from multiple sources. | |
</p> | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
else: | |
st.markdown(''' | |
<div class="main-content"> | |
<div class="error-message" style="text-align: center;"> | |
β οΈ Please enter a news article to analyze | |
</div> | |
</div> | |
''', unsafe_allow_html=True) | |
# Footer | |
st.markdown(""" | |
<div class="footer"> | |
<div class="footer-content"> | |
<h3 class="footer-title">TrueCheck AI</h3> | |
<p class="footer-text"> | |
Empowering users with AI-driven news verification technology. | |
Built with advanced deep learning models for accurate fake news detection. | |
</p> | |
<div class="footer-links"> | |
<a href="#" class="footer-link">About</a> | |
<a href="#" class="footer-link">How It Works</a> | |
<a href="#" class="footer-link">Privacy Policy</a> | |
<a href="#" class="footer-link">Contact</a> | |
</div> | |
<div class="footer-bottom"> | |
<p>© 2025 TrueCheck AI. Built with β€οΈ using Streamlit, BERT, and PyTorch.</p> | |
<p>Disclaimer: This tool provides AI-based analysis. Always verify important information through multiple sources.</p> | |
</div> | |
</div> | |
</div> | |
""", unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() |