TruthCheck / src /app.py
KhaqanNasir's picture
Update src/app.py
b58899f verified
raw
history blame
28.5 kB
# import streamlit as st
# import torch
# import pandas as pd
# import numpy as np
# from pathlib import Path
# import sys
# import plotly.express as px
# import plotly.graph_objects as go
# from transformers import BertTokenizer
# import nltk
# # Download required NLTK data
# try:
# nltk.data.find('tokenizers/punkt')
# except LookupError:
# nltk.download('punkt')
# try:
# nltk.data.find('corpora/stopwords')
# except LookupError:
# nltk.download('stopwords')
# try:
# nltk.data.find('tokenizers/punkt_tab')
# except LookupError:
# nltk.download('punkt_tab')
# try:
# nltk.data.find('corpora/wordnet')
# except LookupError:
# nltk.download('wordnet')
# # Add project root to Python path
# project_root = Path(__file__).parent.parent
# sys.path.append(str(project_root))
# from src.models.hybrid_model import HybridFakeNewsDetector
# from src.config.config import *
# from src.data.preprocessor import TextPreprocessor
# # Page config is set in main app.py
# @st.cache_resource
# def load_model_and_tokenizer():
# """Load the model and tokenizer (cached)."""
# # Initialize model
# model = HybridFakeNewsDetector(
# bert_model_name=BERT_MODEL_NAME,
# lstm_hidden_size=LSTM_HIDDEN_SIZE,
# lstm_num_layers=LSTM_NUM_LAYERS,
# dropout_rate=DROPOUT_RATE
# )
# # Load trained weights
# state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
# # Filter out unexpected keys
# model_state_dict = model.state_dict()
# filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
# # Load the filtered state dict
# model.load_state_dict(filtered_state_dict, strict=False)
# model.eval()
# # Initialize tokenizer
# tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
# return model, tokenizer
# @st.cache_resource
# def get_preprocessor():
# """Get the text preprocessor (cached)."""
# return TextPreprocessor()
# def predict_news(text):
# """Predict if the given news is fake or real."""
# # Get model, tokenizer, and preprocessor from cache
# model, tokenizer = load_model_and_tokenizer()
# preprocessor = get_preprocessor()
# # Preprocess text
# processed_text = preprocessor.preprocess_text(text)
# # Tokenize
# encoding = tokenizer.encode_plus(
# processed_text,
# add_special_tokens=True,
# max_length=MAX_SEQUENCE_LENGTH,
# padding='max_length',
# truncation=True,
# return_attention_mask=True,
# return_tensors='pt'
# )
# # Get prediction
# with torch.no_grad():
# outputs = model(
# encoding['input_ids'],
# encoding['attention_mask']
# )
# probabilities = torch.softmax(outputs['logits'], dim=1)
# prediction = torch.argmax(outputs['logits'], dim=1)
# attention_weights = outputs['attention_weights']
# # Convert attention weights to numpy and get the first sequence
# attention_weights_np = attention_weights[0].cpu().numpy()
# return {
# 'prediction': prediction.item(),
# 'label': 'FAKE' if prediction.item() == 1 else 'REAL',
# 'confidence': torch.max(probabilities, dim=1)[0].item(),
# 'probabilities': {
# 'REAL': probabilities[0][0].item(),
# 'FAKE': probabilities[0][1].item()
# },
# 'attention_weights': attention_weights_np
# }
# def plot_confidence(probabilities):
# """Plot prediction confidence."""
# fig = go.Figure(data=[
# go.Bar(
# x=list(probabilities.keys()),
# y=list(probabilities.values()),
# text=[f'{p:.2%}' for p in probabilities.values()],
# textposition='auto',
# )
# ])
# fig.update_layout(
# title='Prediction Confidence',
# xaxis_title='Class',
# yaxis_title='Probability',
# yaxis_range=[0, 1]
# )
# return fig
# def plot_attention(text, attention_weights):
# """Plot attention weights."""
# tokens = text.split()
# attention_weights = attention_weights[:len(tokens)] # Truncate to match tokens
# # Ensure attention weights are in the correct format
# if isinstance(attention_weights, (list, np.ndarray)):
# attention_weights = np.array(attention_weights).flatten()
# # Format weights for display
# formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
# fig = go.Figure(data=[
# go.Bar(
# x=tokens,
# y=attention_weights,
# text=formatted_weights,
# textposition='auto',
# )
# ])
# fig.update_layout(
# title='Attention Weights',
# xaxis_title='Tokens',
# yaxis_title='Attention Weight',
# xaxis_tickangle=45
# )
# return fig
# def main():
# st.title("πŸ“° Fake News Detection System")
# st.write("""
# This application uses a hybrid deep learning model (BERT + BiLSTM + Attention)
# to detect fake news articles. Enter a news article below to analyze it.
# """)
# # Sidebar
# st.sidebar.title("About")
# st.sidebar.info("""
# The model combines:
# - BERT for contextual embeddings
# - BiLSTM for sequence modeling
# - Attention mechanism for interpretability
# """)
# # Main content
# st.header("News Analysis")
# # Text input
# news_text = st.text_area(
# "Enter the news article to analyze:",
# height=200,
# placeholder="Paste your news article here..."
# )
# if st.button("Analyze"):
# if news_text:
# with st.spinner("Analyzing the news article..."):
# # Get prediction
# result = predict_news(news_text)
# # Display result
# col1, col2 = st.columns(2)
# with col1:
# st.subheader("Prediction")
# if result['label'] == 'FAKE':
# st.error(f"πŸ”΄ This news is likely FAKE (Confidence: {result['confidence']:.2%})")
# else:
# st.success(f"🟒 This news is likely REAL (Confidence: {result['confidence']:.2%})")
# with col2:
# st.subheader("Confidence Scores")
# st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
# # Show attention visualization
# st.subheader("Attention Analysis")
# st.write("""
# The attention weights show which parts of the text the model focused on
# while making its prediction. Higher weights indicate more important tokens.
# """)
# st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
# # Show model explanation
# st.subheader("Model Explanation")
# if result['label'] == 'FAKE':
# st.write("""
# The model identified this as fake news based on:
# - Linguistic patterns typical of fake news
# - Inconsistencies in the content
# - Attention weights on suspicious phrases
# """)
# else:
# st.write("""
# The model identified this as real news based on:
# - Credible language patterns
# - Consistent information
# - Attention weights on factual statements
# """)
# else:
# st.warning("Please enter a news article to analyze.")
# if __name__ == "__main__":
# main()
import streamlit as st
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import sys
import plotly.express as px
import plotly.graph_objects as go
from transformers import BertTokenizer
import nltk
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('stopwords')
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
try:
nltk.data.find('corpora/wordnet')
except LookupError:
nltk.download('wordnet')
# Add project root to Python path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))
from src.models.hybrid_model import HybridFakeNewsDetector
from src.config.config import *
from src.data.preprocessor import TextPreprocessor
# REMOVED st.set_page_config() - This should only be called once in the main entry point
# Custom CSS for modern styling
st.markdown("""
<style>
/* Import Google Fonts */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
/* Global Styles */
.main {
padding: 0;
}
.stApp {
font-family: 'Inter', sans-serif;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
}
/* Hide Streamlit elements */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stDeployButton {display: none;}
header {visibility: hidden;}
/* Hero Section */
.hero-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 4rem 2rem;
text-align: center;
color: white;
margin-bottom: 2rem;
}
.hero-title {
font-size: 4rem;
font-weight: 700;
margin-bottom: 1rem;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
background: linear-gradient(45deg, #fff, #e0e7ff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.hero-subtitle {
font-size: 1.3rem;
font-weight: 400;
margin-bottom: 2rem;
opacity: 0.9;
max-width: 600px;
margin-left: auto;
margin-right: auto;
line-height: 1.6;
}
/* Features Section */
.features-container {
background: white;
padding: 3rem 2rem;
margin: 2rem 0;
border-radius: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
}
.features-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 2rem;
margin-top: 2rem;
}
.feature-card {
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
padding: 2rem;
border-radius: 16px;
text-align: center;
transition: transform 0.3s ease, box-shadow 0.3s ease;
border: 1px solid #e2e8f0;
}
.feature-card:hover {
transform: translateY(-10px);
box-shadow: 0 20px 40px rgba(0,0,0,0.15);
}
.feature-icon {
font-size: 3rem;
margin-bottom: 1rem;
display: block;
}
.feature-title {
font-size: 1.2rem;
font-weight: 600;
color: #1e293b;
margin-bottom: 0.5rem;
}
.feature-description {
color: #64748b;
line-height: 1.5;
font-size: 0.95rem;
}
/* Main Content Section */
.main-content {
background: white;
padding: 3rem;
border-radius: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
margin: 2rem 0;
}
.section-title {
font-size: 2.5rem;
font-weight: 700;
text-align: center;
color: #1e293b;
margin-bottom: 1rem;
}
.section-description {
text-align: center;
color: #64748b;
font-size: 1.1rem;
margin-bottom: 2rem;
max-width: 600px;
margin-left: auto;
margin-right: auto;
line-height: 1.6;
}
/* Input Section */
.stTextArea > div > div > textarea {
border-radius: 12px;
border: 2px solid #e2e8f0;
padding: 1rem;
font-size: 1rem;
transition: border-color 0.3s ease;
font-family: 'Inter', sans-serif;
}
.stTextArea > div > div > textarea:focus {
border-color: #667eea;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
}
/* Button Styling */
.stButton > button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border: none;
border-radius: 12px;
padding: 0.75rem 2rem;
font-size: 1.1rem;
font-weight: 600;
font-family: 'Inter', sans-serif;
transition: all 0.3s ease;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4);
width: 100%;
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6);
}
/* Results Section */
.result-card {
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
padding: 2rem;
border-radius: 16px;
margin: 1rem 0;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
}
.success-message {
background: linear-gradient(135deg, #dcfce7 0%, #bbf7d0 100%);
color: #166534;
padding: 1rem 1.5rem;
border-radius: 12px;
border-left: 4px solid #22c55e;
font-weight: 500;
margin: 1rem 0;
}
.error-message {
background: linear-gradient(135deg, #fef2f2 0%, #fecaca 100%);
color: #991b1b;
padding: 1rem 1.5rem;
border-radius: 12px;
border-left: 4px solid #ef4444;
font-weight: 500;
margin: 1rem 0;
}
/* Footer */
.footer {
background: linear-gradient(135deg, #1e293b 0%, #334155 100%);
color: white;
padding: 3rem 2rem 2rem;
text-align: center;
margin-top: 4rem;
}
.footer-content {
max-width: 1200px;
margin: 0 auto;
}
.footer-title {
font-size: 1.5rem;
font-weight: 600;
margin-bottom: 1rem;
}
.footer-text {
color: #94a3b8;
margin-bottom: 2rem;
line-height: 1.6;
}
.footer-links {
display: flex;
justify-content: center;
gap: 2rem;
margin-bottom: 2rem;
}
.footer-link {
color: #94a3b8;
text-decoration: none;
transition: color 0.3s ease;
}
.footer-link:hover {
color: white;
}
.footer-bottom {
border-top: 1px solid #475569;
padding-top: 2rem;
color: #94a3b8;
font-size: 0.9rem;
}
/* Responsive Design */
@media (max-width: 768px) {
.hero-title {
font-size: 3rem;
}
.features-grid {
grid-template-columns: 1fr;
}
.main-content {
padding: 2rem;
}
.footer-links {
flex-direction: column;
gap: 1rem;
}
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_model_and_tokenizer():
"""Load the model and tokenizer (cached)."""
model = HybridFakeNewsDetector(
bert_model_name=BERT_MODEL_NAME,
lstm_hidden_size=LSTM_HIDDEN_SIZE,
lstm_num_layers=LSTM_NUM_LAYERS,
dropout_rate=DROPOUT_RATE
)
state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
model_state_dict = model.state_dict()
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
model.load_state_dict(filtered_state_dict, strict=False)
model.eval()
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
return model, tokenizer
@st.cache_resource
def get_preprocessor():
"""Get the text preprocessor (cached)."""
return TextPreprocessor()
def predict_news(text):
"""Predict if the given news is fake or real."""
model, tokenizer = load_model_and_tokenizer()
preprocessor = get_preprocessor()
processed_text = preprocessor.preprocess_text(text)
encoding = tokenizer.encode_plus(
processed_text,
add_special_tokens=True,
max_length=MAX_SEQUENCE_LENGTH,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
with torch.no_grad():
outputs = model(
encoding['input_ids'],
encoding['attention_mask']
)
probabilities = torch.softmax(outputs['logits'], dim=1)
prediction = torch.argmax(outputs['logits'], dim=1)
attention_weights = outputs['attention_weights']
attention_weights_np = attention_weights[0].cpu().numpy()
return {
'prediction': prediction.item(),
'label': 'FAKE' if prediction.item() == 1 else 'REAL',
'confidence': torch.max(probabilities, dim=1)[0].item(),
'probabilities': {
'REAL': probabilities[0][0].item(),
'FAKE': probabilities[0][1].item()
},
'attention_weights': attention_weights_np
}
def plot_confidence(probabilities):
"""Plot prediction confidence."""
fig = go.Figure(data=[
go.Bar(
x=list(probabilities.keys()),
y=list(probabilities.values()),
text=[f'{p:.2%}' for p in probabilities.values()],
textposition='auto',
marker_color=['#22c55e', '#ef4444'],
marker_line_color='rgba(0,0,0,0.1)',
marker_line_width=1
)
])
fig.update_layout(
title={
'text': 'Prediction Confidence',
'x': 0.5,
'xanchor': 'center',
'font': {'size': 18, 'family': 'Inter'}
},
xaxis_title='Class',
yaxis_title='Probability',
yaxis_range=[0, 1],
template='plotly_white',
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font={'family': 'Inter'}
)
return fig
def plot_attention(text, attention_weights):
"""Plot attention weights."""
tokens = text.split()
attention_weights = attention_weights[:len(tokens)]
if isinstance(attention_weights, (list, np.ndarray)):
attention_weights = np.array(attention_weights).flatten()
formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
# Create color scale based on attention weights
colors = ['rgba(102, 126, 234, ' + str(0.3 + 0.7 * (w / max(attention_weights))) + ')'
for w in attention_weights]
fig = go.Figure(data=[
go.Bar(
x=tokens,
y=attention_weights,
text=formatted_weights,
textposition='auto',
marker_color=colors,
marker_line_color='rgba(102, 126, 234, 0.8)',
marker_line_width=1
)
])
fig.update_layout(
title={
'text': 'Attention Weights Analysis',
'x': 0.5,
'xanchor': 'center',
'font': {'size': 18, 'family': 'Inter'}
},
xaxis_title='Tokens',
yaxis_title='Attention Weight',
xaxis_tickangle=45,
template='plotly_white',
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font={'family': 'Inter'}
)
return fig
def main():
# Hero Section
st.markdown("""
<div class="hero-container">
<h1 class="hero-title">πŸ” TrueCheck</h1>
<p class="hero-subtitle">
Advanced AI-powered fake news detection using cutting-edge deep learning technology.
Get instant, accurate analysis of news articles with our hybrid BERT-BiLSTM model.
</p>
</div>
""", unsafe_allow_html=True)
# Features Section
st.markdown("""
<div class="features-container">
<h2 style="text-align: center; font-size: 2rem; font-weight: 700; color: #1e293b; margin-bottom: 1rem;">
Why Choose TrueCheck?
</h2>
<p style="text-align: center; color: #64748b; font-size: 1.1rem; margin-bottom: 2rem;">
Our advanced AI model combines multiple technologies for superior accuracy
</p>
<div class="features-grid">
<div class="feature-card">
<span class="feature-icon">πŸ€–</span>
<h3 class="feature-title">BERT Technology</h3>
<p class="feature-description">
Utilizes state-of-the-art BERT transformer for deep contextual understanding of news content
</p>
</div>
<div class="feature-card">
<span class="feature-icon">🧠</span>
<h3 class="feature-title">BiLSTM Processing</h3>
<p class="feature-description">
Bidirectional LSTM networks capture sequential patterns and dependencies in text structure
</p>
</div>
<div class="feature-card">
<span class="feature-icon">πŸ‘οΈ</span>
<h3 class="feature-title">Attention Mechanism</h3>
<p class="feature-description">
Advanced attention layers provide interpretable insights into model decision-making process
</p>
</div>
</div>
</div>
""", unsafe_allow_html=True)
# Main Content Section
st.markdown("""
<div class="main-content">
<h2 class="section-title">Analyze News Article</h2>
<p class="section-description">
Paste any news article below and our AI will analyze it for authenticity.
Get detailed insights including confidence scores and attention analysis.
</p>
</div>
""", unsafe_allow_html=True)
# Input Section
col1, col2, col3 = st.columns([1, 3, 1])
with col2:
news_text = st.text_area(
"",
height=200,
placeholder="πŸ“° Paste your news article here for analysis...",
key="news_input"
)
analyze_button = st.button("πŸ” Analyze Article", key="analyze_button")
if analyze_button:
if news_text:
with st.spinner("πŸ€– Analyzing the news article..."):
result = predict_news(news_text)
# Results Section
st.markdown('<div class="main-content">', unsafe_allow_html=True)
col1, col2 = st.columns([1, 1], gap="large")
with col1:
st.markdown("### πŸ“Š Prediction Result")
if result['label'] == 'FAKE':
st.markdown(f'''
<div class="error-message">
πŸ”΄ <strong>FAKE NEWS DETECTED</strong><br>
Confidence: {result["confidence"]:.2%}
</div>
''', unsafe_allow_html=True)
else:
st.markdown(f'''
<div class="success-message">
🟒 <strong>AUTHENTIC NEWS</strong><br>
Confidence: {result["confidence"]:.2%}
</div>
''', unsafe_allow_html=True)
with col2:
st.markdown("### πŸ“ˆ Confidence Breakdown")
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
st.markdown("### 🎯 Attention Analysis")
st.markdown("""
<p style="color: #64748b; text-align: center; margin-bottom: 2rem;">
The visualization below shows which words our AI model focused on while making its prediction.
Darker colors indicate higher attention weights.
</p>
""", unsafe_allow_html=True)
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
st.markdown("### πŸ” Detailed Analysis")
if result['label'] == 'FAKE':
st.markdown("""
<div class="result-card">
<h4 style="color: #ef4444; margin-bottom: 1rem;">⚠️ Fake News Indicators</h4>
<ul style="color: #64748b; line-height: 1.8;">
<li><strong>Linguistic Patterns:</strong> The model detected language patterns commonly associated with misinformation</li>
<li><strong>Content Inconsistencies:</strong> Identified potential factual inconsistencies or misleading statements</li>
<li><strong>Attention Analysis:</strong> High attention weights on suspicious phrases and emotionally charged language</li>
<li><strong>Structural Analysis:</strong> Text structure and flow patterns typical of fabricated content</li>
</ul>
<p style="color: #7c3aed; font-weight: 500; margin-top: 1rem;">
πŸ’‘ <strong>Recommendation:</strong> Verify this information through multiple reliable sources before sharing.
</p>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div class="result-card">
<h4 style="color: #22c55e; margin-bottom: 1rem;">βœ… Authentic News Indicators</h4>
<ul style="color: #64748b; line-height: 1.8;">
<li><strong>Credible Language:</strong> Professional journalistic writing style and balanced reporting tone</li>
<li><strong>Factual Consistency:</strong> Information appears coherent and factually consistent</li>
<li><strong>Attention Analysis:</strong> Model focused on factual statements and objective reporting</li>
<li><strong>Structural Integrity:</strong> Well-structured content following standard news article format</li>
</ul>
<p style="color: #7c3aed; font-weight: 500; margin-top: 1rem;">
πŸ’‘ <strong>Note:</strong> While likely authentic, always cross-reference important news from multiple sources.
</p>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
else:
st.markdown('''
<div class="main-content">
<div class="error-message" style="text-align: center;">
⚠️ Please enter a news article to analyze
</div>
</div>
''', unsafe_allow_html=True)
# Footer
st.markdown("""
<div class="footer">
<div class="footer-content">
<h3 class="footer-title">TrueCheck AI</h3>
<p class="footer-text">
Empowering users with AI-driven news verification technology.
Built with advanced deep learning models for accurate fake news detection.
</p>
<div class="footer-links">
<a href="#" class="footer-link">About</a>
<a href="#" class="footer-link">How It Works</a>
<a href="#" class="footer-link">Privacy Policy</a>
<a href="#" class="footer-link">Contact</a>
</div>
<div class="footer-bottom">
<p>&copy; 2025 TrueCheck AI. Built with ❀️ using Streamlit, BERT, and PyTorch.</p>
<p>Disclaimer: This tool provides AI-based analysis. Always verify important information through multiple sources.</p>
</div>
</div>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main()