Spaces:
Sleeping
Sleeping
Update src/app.py (#12)
Browse files- Update src/app.py (d3f9626ae02a0891007513a299927e03ee263b66)
Co-authored-by: Muhammad Khaqan Nasir <[email protected]>
- src/app.py +441 -58
src/app.py
CHANGED
@@ -240,7 +240,6 @@
|
|
240 |
# if __name__ == "__main__":
|
241 |
# main()
|
242 |
|
243 |
-
|
244 |
import streamlit as st
|
245 |
import torch
|
246 |
import pandas as pd
|
@@ -278,6 +277,281 @@ from src.models.hybrid_model import HybridFakeNewsDetector
|
|
278 |
from src.config.config import *
|
279 |
from src.data.preprocessor import TextPreprocessor
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
@st.cache_resource
|
282 |
def load_model_and_tokenizer():
|
283 |
"""Load the model and tokenizer (cached)."""
|
@@ -342,15 +616,25 @@ def plot_confidence(probabilities):
|
|
342 |
y=list(probabilities.values()),
|
343 |
text=[f'{p:.2%}' for p in probabilities.values()],
|
344 |
textposition='auto',
|
345 |
-
marker_color=['#
|
|
|
|
|
346 |
)
|
347 |
])
|
348 |
fig.update_layout(
|
349 |
-
title=
|
|
|
|
|
|
|
|
|
|
|
350 |
xaxis_title='Class',
|
351 |
yaxis_title='Probability',
|
352 |
yaxis_range=[0, 1],
|
353 |
-
template='plotly_white'
|
|
|
|
|
|
|
354 |
)
|
355 |
return fig
|
356 |
|
@@ -361,114 +645,213 @@ def plot_attention(text, attention_weights):
|
|
361 |
if isinstance(attention_weights, (list, np.ndarray)):
|
362 |
attention_weights = np.array(attention_weights).flatten()
|
363 |
formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
|
|
|
|
|
|
|
|
|
|
|
364 |
fig = go.Figure(data=[
|
365 |
go.Bar(
|
366 |
x=tokens,
|
367 |
y=attention_weights,
|
368 |
text=formatted_weights,
|
369 |
textposition='auto',
|
370 |
-
marker_color=
|
|
|
|
|
371 |
)
|
372 |
])
|
373 |
fig.update_layout(
|
374 |
-
title=
|
|
|
|
|
|
|
|
|
|
|
375 |
xaxis_title='Tokens',
|
376 |
yaxis_title='Attention Weight',
|
377 |
xaxis_tickangle=45,
|
378 |
-
template='plotly_white'
|
|
|
|
|
|
|
379 |
)
|
380 |
return fig
|
381 |
|
382 |
def main():
|
383 |
-
# Hero
|
384 |
st.markdown("""
|
385 |
-
<div class="hero-
|
386 |
-
<
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
</p>
|
392 |
</div>
|
393 |
-
<div
|
394 |
-
<
|
|
|
|
|
|
|
|
|
395 |
</div>
|
396 |
</div>
|
397 |
</div>
|
398 |
""", unsafe_allow_html=True)
|
399 |
|
400 |
-
#
|
401 |
-
st.
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
<li>BiLSTM for sequence modeling</li>
|
409 |
-
<li>Attention mechanism for interpretability</li>
|
410 |
-
</ul>
|
411 |
</div>
|
412 |
""", unsafe_allow_html=True)
|
413 |
|
414 |
-
#
|
415 |
-
st.
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
|
|
|
|
|
|
|
|
423 |
if news_text:
|
424 |
-
with st.spinner("Analyzing the news article..."):
|
425 |
result = predict_news(news_text)
|
|
|
|
|
|
|
|
|
426 |
col1, col2 = st.columns([1, 1], gap="large")
|
427 |
|
428 |
with col1:
|
429 |
-
st.markdown("### Prediction")
|
430 |
if result['label'] == 'FAKE':
|
431 |
-
st.markdown(f'
|
|
|
|
|
|
|
|
|
|
|
432 |
else:
|
433 |
-
st.markdown(f'
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
with col2:
|
436 |
-
st.markdown("### Confidence
|
437 |
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
438 |
|
439 |
-
st.markdown("### Attention Analysis")
|
440 |
st.markdown("""
|
441 |
-
<p style="color: #
|
442 |
-
The
|
|
|
443 |
</p>
|
444 |
""", unsafe_allow_html=True)
|
445 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
446 |
|
447 |
-
st.markdown("###
|
448 |
if result['label'] == 'FAKE':
|
449 |
st.markdown("""
|
450 |
-
<div
|
451 |
-
<
|
452 |
-
<ul>
|
453 |
-
<li>Linguistic patterns
|
454 |
-
<li>Inconsistencies
|
455 |
-
<li>Attention weights on suspicious phrases</li>
|
|
|
456 |
</ul>
|
|
|
|
|
|
|
457 |
</div>
|
458 |
""", unsafe_allow_html=True)
|
459 |
else:
|
460 |
st.markdown("""
|
461 |
-
<div
|
462 |
-
<
|
463 |
-
<ul>
|
464 |
-
<li>Credible
|
465 |
-
<li>
|
466 |
-
<li>Attention
|
|
|
467 |
</ul>
|
|
|
|
|
|
|
468 |
</div>
|
469 |
""", unsafe_allow_html=True)
|
|
|
|
|
470 |
else:
|
471 |
-
st.markdown('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
|
473 |
if __name__ == "__main__":
|
474 |
main()
|
|
|
240 |
# if __name__ == "__main__":
|
241 |
# main()
|
242 |
|
|
|
243 |
import streamlit as st
|
244 |
import torch
|
245 |
import pandas as pd
|
|
|
277 |
from src.config.config import *
|
278 |
from src.data.preprocessor import TextPreprocessor
|
279 |
|
280 |
+
# Set page config
|
281 |
+
st.set_page_config(
|
282 |
+
page_title="TrueCheck - AI Fake News Detector",
|
283 |
+
page_icon="π",
|
284 |
+
layout="wide",
|
285 |
+
initial_sidebar_state="collapsed"
|
286 |
+
)
|
287 |
+
|
288 |
+
# Custom CSS for modern styling
|
289 |
+
st.markdown("""
|
290 |
+
<style>
|
291 |
+
/* Import Google Fonts */
|
292 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
293 |
+
|
294 |
+
/* Global Styles */
|
295 |
+
.main {
|
296 |
+
padding: 0;
|
297 |
+
}
|
298 |
+
|
299 |
+
.stApp {
|
300 |
+
font-family: 'Inter', sans-serif;
|
301 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
302 |
+
min-height: 100vh;
|
303 |
+
}
|
304 |
+
|
305 |
+
/* Hide Streamlit elements */
|
306 |
+
#MainMenu {visibility: hidden;}
|
307 |
+
footer {visibility: hidden;}
|
308 |
+
.stDeployButton {display: none;}
|
309 |
+
header {visibility: hidden;}
|
310 |
+
|
311 |
+
/* Hero Section */
|
312 |
+
.hero-container {
|
313 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
314 |
+
padding: 4rem 2rem;
|
315 |
+
text-align: center;
|
316 |
+
color: white;
|
317 |
+
margin-bottom: 2rem;
|
318 |
+
}
|
319 |
+
|
320 |
+
.hero-title {
|
321 |
+
font-size: 4rem;
|
322 |
+
font-weight: 700;
|
323 |
+
margin-bottom: 1rem;
|
324 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
325 |
+
background: linear-gradient(45deg, #fff, #e0e7ff);
|
326 |
+
-webkit-background-clip: text;
|
327 |
+
-webkit-text-fill-color: transparent;
|
328 |
+
background-clip: text;
|
329 |
+
}
|
330 |
+
|
331 |
+
.hero-subtitle {
|
332 |
+
font-size: 1.3rem;
|
333 |
+
font-weight: 400;
|
334 |
+
margin-bottom: 2rem;
|
335 |
+
opacity: 0.9;
|
336 |
+
max-width: 600px;
|
337 |
+
margin-left: auto;
|
338 |
+
margin-right: auto;
|
339 |
+
line-height: 1.6;
|
340 |
+
}
|
341 |
+
|
342 |
+
/* Features Section */
|
343 |
+
.features-container {
|
344 |
+
background: white;
|
345 |
+
padding: 3rem 2rem;
|
346 |
+
margin: 2rem 0;
|
347 |
+
border-radius: 20px;
|
348 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
|
349 |
+
}
|
350 |
+
|
351 |
+
.features-grid {
|
352 |
+
display: grid;
|
353 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
354 |
+
gap: 2rem;
|
355 |
+
margin-top: 2rem;
|
356 |
+
}
|
357 |
+
|
358 |
+
.feature-card {
|
359 |
+
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
|
360 |
+
padding: 2rem;
|
361 |
+
border-radius: 16px;
|
362 |
+
text-align: center;
|
363 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
364 |
+
border: 1px solid #e2e8f0;
|
365 |
+
}
|
366 |
+
|
367 |
+
.feature-card:hover {
|
368 |
+
transform: translateY(-10px);
|
369 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.15);
|
370 |
+
}
|
371 |
+
|
372 |
+
.feature-icon {
|
373 |
+
font-size: 3rem;
|
374 |
+
margin-bottom: 1rem;
|
375 |
+
display: block;
|
376 |
+
}
|
377 |
+
|
378 |
+
.feature-title {
|
379 |
+
font-size: 1.2rem;
|
380 |
+
font-weight: 600;
|
381 |
+
color: #1e293b;
|
382 |
+
margin-bottom: 0.5rem;
|
383 |
+
}
|
384 |
+
|
385 |
+
.feature-description {
|
386 |
+
color: #64748b;
|
387 |
+
line-height: 1.5;
|
388 |
+
font-size: 0.95rem;
|
389 |
+
}
|
390 |
+
|
391 |
+
/* Main Content Section */
|
392 |
+
.main-content {
|
393 |
+
background: white;
|
394 |
+
padding: 3rem;
|
395 |
+
border-radius: 20px;
|
396 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
|
397 |
+
margin: 2rem 0;
|
398 |
+
}
|
399 |
+
|
400 |
+
.section-title {
|
401 |
+
font-size: 2.5rem;
|
402 |
+
font-weight: 700;
|
403 |
+
text-align: center;
|
404 |
+
color: #1e293b;
|
405 |
+
margin-bottom: 1rem;
|
406 |
+
}
|
407 |
+
|
408 |
+
.section-description {
|
409 |
+
text-align: center;
|
410 |
+
color: #64748b;
|
411 |
+
font-size: 1.1rem;
|
412 |
+
margin-bottom: 2rem;
|
413 |
+
max-width: 600px;
|
414 |
+
margin-left: auto;
|
415 |
+
margin-right: auto;
|
416 |
+
line-height: 1.6;
|
417 |
+
}
|
418 |
+
|
419 |
+
/* Input Section */
|
420 |
+
.stTextArea > div > div > textarea {
|
421 |
+
border-radius: 12px;
|
422 |
+
border: 2px solid #e2e8f0;
|
423 |
+
padding: 1rem;
|
424 |
+
font-size: 1rem;
|
425 |
+
transition: border-color 0.3s ease;
|
426 |
+
font-family: 'Inter', sans-serif;
|
427 |
+
}
|
428 |
+
|
429 |
+
.stTextArea > div > div > textarea:focus {
|
430 |
+
border-color: #667eea;
|
431 |
+
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
|
432 |
+
}
|
433 |
+
|
434 |
+
/* Button Styling */
|
435 |
+
.stButton > button {
|
436 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
437 |
+
color: white;
|
438 |
+
border: none;
|
439 |
+
border-radius: 12px;
|
440 |
+
padding: 0.75rem 2rem;
|
441 |
+
font-size: 1.1rem;
|
442 |
+
font-weight: 600;
|
443 |
+
font-family: 'Inter', sans-serif;
|
444 |
+
transition: all 0.3s ease;
|
445 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4);
|
446 |
+
width: 100%;
|
447 |
+
}
|
448 |
+
|
449 |
+
.stButton > button:hover {
|
450 |
+
transform: translateY(-2px);
|
451 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6);
|
452 |
+
}
|
453 |
+
|
454 |
+
/* Results Section */
|
455 |
+
.result-card {
|
456 |
+
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
|
457 |
+
padding: 2rem;
|
458 |
+
border-radius: 16px;
|
459 |
+
margin: 1rem 0;
|
460 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
|
461 |
+
}
|
462 |
+
|
463 |
+
.success-message {
|
464 |
+
background: linear-gradient(135deg, #dcfce7 0%, #bbf7d0 100%);
|
465 |
+
color: #166534;
|
466 |
+
padding: 1rem 1.5rem;
|
467 |
+
border-radius: 12px;
|
468 |
+
border-left: 4px solid #22c55e;
|
469 |
+
font-weight: 500;
|
470 |
+
margin: 1rem 0;
|
471 |
+
}
|
472 |
+
|
473 |
+
.error-message {
|
474 |
+
background: linear-gradient(135deg, #fef2f2 0%, #fecaca 100%);
|
475 |
+
color: #991b1b;
|
476 |
+
padding: 1rem 1.5rem;
|
477 |
+
border-radius: 12px;
|
478 |
+
border-left: 4px solid #ef4444;
|
479 |
+
font-weight: 500;
|
480 |
+
margin: 1rem 0;
|
481 |
+
}
|
482 |
+
|
483 |
+
/* Footer */
|
484 |
+
.footer {
|
485 |
+
background: linear-gradient(135deg, #1e293b 0%, #334155 100%);
|
486 |
+
color: white;
|
487 |
+
padding: 3rem 2rem 2rem;
|
488 |
+
text-align: center;
|
489 |
+
margin-top: 4rem;
|
490 |
+
}
|
491 |
+
|
492 |
+
.footer-content {
|
493 |
+
max-width: 1200px;
|
494 |
+
margin: 0 auto;
|
495 |
+
}
|
496 |
+
|
497 |
+
.footer-title {
|
498 |
+
font-size: 1.5rem;
|
499 |
+
font-weight: 600;
|
500 |
+
margin-bottom: 1rem;
|
501 |
+
}
|
502 |
+
|
503 |
+
.footer-text {
|
504 |
+
color: #94a3b8;
|
505 |
+
margin-bottom: 2rem;
|
506 |
+
line-height: 1.6;
|
507 |
+
}
|
508 |
+
|
509 |
+
.footer-links {
|
510 |
+
display: flex;
|
511 |
+
justify-content: center;
|
512 |
+
gap: 2rem;
|
513 |
+
margin-bottom: 2rem;
|
514 |
+
}
|
515 |
+
|
516 |
+
.footer-link {
|
517 |
+
color: #94a3b8;
|
518 |
+
text-decoration: none;
|
519 |
+
transition: color 0.3s ease;
|
520 |
+
}
|
521 |
+
|
522 |
+
.footer-link:hover {
|
523 |
+
color: white;
|
524 |
+
}
|
525 |
+
|
526 |
+
.footer-bottom {
|
527 |
+
border-top: 1px solid #475569;
|
528 |
+
padding-top: 2rem;
|
529 |
+
color: #94a3b8;
|
530 |
+
font-size: 0.9rem;
|
531 |
+
}
|
532 |
+
|
533 |
+
/* Responsive Design */
|
534 |
+
@media (max-width: 768px) {
|
535 |
+
.hero-title {
|
536 |
+
font-size: 3rem;
|
537 |
+
}
|
538 |
+
|
539 |
+
.features-grid {
|
540 |
+
grid-template-columns: 1fr;
|
541 |
+
}
|
542 |
+
|
543 |
+
.main-content {
|
544 |
+
padding: 2rem;
|
545 |
+
}
|
546 |
+
|
547 |
+
.footer-links {
|
548 |
+
flex-direction: column;
|
549 |
+
gap: 1rem;
|
550 |
+
}
|
551 |
+
}
|
552 |
+
</style>
|
553 |
+
""", unsafe_allow_html=True)
|
554 |
+
|
555 |
@st.cache_resource
|
556 |
def load_model_and_tokenizer():
|
557 |
"""Load the model and tokenizer (cached)."""
|
|
|
616 |
y=list(probabilities.values()),
|
617 |
text=[f'{p:.2%}' for p in probabilities.values()],
|
618 |
textposition='auto',
|
619 |
+
marker_color=['#22c55e', '#ef4444'],
|
620 |
+
marker_line_color='rgba(0,0,0,0.1)',
|
621 |
+
marker_line_width=1
|
622 |
)
|
623 |
])
|
624 |
fig.update_layout(
|
625 |
+
title={
|
626 |
+
'text': 'Prediction Confidence',
|
627 |
+
'x': 0.5,
|
628 |
+
'xanchor': 'center',
|
629 |
+
'font': {'size': 18, 'family': 'Inter'}
|
630 |
+
},
|
631 |
xaxis_title='Class',
|
632 |
yaxis_title='Probability',
|
633 |
yaxis_range=[0, 1],
|
634 |
+
template='plotly_white',
|
635 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
636 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
637 |
+
font={'family': 'Inter'}
|
638 |
)
|
639 |
return fig
|
640 |
|
|
|
645 |
if isinstance(attention_weights, (list, np.ndarray)):
|
646 |
attention_weights = np.array(attention_weights).flatten()
|
647 |
formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
|
648 |
+
|
649 |
+
# Create color scale based on attention weights
|
650 |
+
colors = ['rgba(102, 126, 234, ' + str(0.3 + 0.7 * (w / max(attention_weights))) + ')'
|
651 |
+
for w in attention_weights]
|
652 |
+
|
653 |
fig = go.Figure(data=[
|
654 |
go.Bar(
|
655 |
x=tokens,
|
656 |
y=attention_weights,
|
657 |
text=formatted_weights,
|
658 |
textposition='auto',
|
659 |
+
marker_color=colors,
|
660 |
+
marker_line_color='rgba(102, 126, 234, 0.8)',
|
661 |
+
marker_line_width=1
|
662 |
)
|
663 |
])
|
664 |
fig.update_layout(
|
665 |
+
title={
|
666 |
+
'text': 'Attention Weights Analysis',
|
667 |
+
'x': 0.5,
|
668 |
+
'xanchor': 'center',
|
669 |
+
'font': {'size': 18, 'family': 'Inter'}
|
670 |
+
},
|
671 |
xaxis_title='Tokens',
|
672 |
yaxis_title='Attention Weight',
|
673 |
xaxis_tickangle=45,
|
674 |
+
template='plotly_white',
|
675 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
676 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
677 |
+
font={'family': 'Inter'}
|
678 |
)
|
679 |
return fig
|
680 |
|
681 |
def main():
|
682 |
+
# Hero Section
|
683 |
st.markdown("""
|
684 |
+
<div class="hero-container">
|
685 |
+
<h1 class="hero-title">π TrueCheck</h1>
|
686 |
+
<p class="hero-subtitle">
|
687 |
+
Advanced AI-powered fake news detection using cutting-edge deep learning technology.
|
688 |
+
Get instant, accurate analysis of news articles with our hybrid BERT-BiLSTM model.
|
689 |
+
</p>
|
690 |
+
</div>
|
691 |
+
""", unsafe_allow_html=True)
|
692 |
+
|
693 |
+
# Features Section
|
694 |
+
st.markdown("""
|
695 |
+
<div class="features-container">
|
696 |
+
<h2 style="text-align: center; font-size: 2rem; font-weight: 700; color: #1e293b; margin-bottom: 1rem;">
|
697 |
+
Why Choose TrueCheck?
|
698 |
+
</h2>
|
699 |
+
<p style="text-align: center; color: #64748b; font-size: 1.1rem; margin-bottom: 2rem;">
|
700 |
+
Our advanced AI model combines multiple technologies for superior accuracy
|
701 |
+
</p>
|
702 |
+
<div class="features-grid">
|
703 |
+
<div class="feature-card">
|
704 |
+
<span class="feature-icon">π€</span>
|
705 |
+
<h3 class="feature-title">BERT Technology</h3>
|
706 |
+
<p class="feature-description">
|
707 |
+
Utilizes state-of-the-art BERT transformer for deep contextual understanding of news content
|
708 |
+
</p>
|
709 |
+
</div>
|
710 |
+
<div class="feature-card">
|
711 |
+
<span class="feature-icon">π§ </span>
|
712 |
+
<h3 class="feature-title">BiLSTM Processing</h3>
|
713 |
+
<p class="feature-description">
|
714 |
+
Bidirectional LSTM networks capture sequential patterns and dependencies in text structure
|
715 |
</p>
|
716 |
</div>
|
717 |
+
<div class="feature-card">
|
718 |
+
<span class="feature-icon">ποΈ</span>
|
719 |
+
<h3 class="feature-title">Attention Mechanism</h3>
|
720 |
+
<p class="feature-description">
|
721 |
+
Advanced attention layers provide interpretable insights into model decision-making process
|
722 |
+
</p>
|
723 |
</div>
|
724 |
</div>
|
725 |
</div>
|
726 |
""", unsafe_allow_html=True)
|
727 |
|
728 |
+
# Main Content Section
|
729 |
+
st.markdown("""
|
730 |
+
<div class="main-content">
|
731 |
+
<h2 class="section-title">Analyze News Article</h2>
|
732 |
+
<p class="section-description">
|
733 |
+
Paste any news article below and our AI will analyze it for authenticity.
|
734 |
+
Get detailed insights including confidence scores and attention analysis.
|
735 |
+
</p>
|
|
|
|
|
|
|
736 |
</div>
|
737 |
""", unsafe_allow_html=True)
|
738 |
|
739 |
+
# Input Section
|
740 |
+
col1, col2, col3 = st.columns([1, 3, 1])
|
741 |
+
with col2:
|
742 |
+
news_text = st.text_area(
|
743 |
+
"",
|
744 |
+
height=200,
|
745 |
+
placeholder="π° Paste your news article here for analysis...",
|
746 |
+
key="news_input"
|
747 |
+
)
|
748 |
+
|
749 |
+
analyze_button = st.button("π Analyze Article", key="analyze_button")
|
750 |
+
|
751 |
+
if analyze_button:
|
752 |
if news_text:
|
753 |
+
with st.spinner("π€ Analyzing the news article..."):
|
754 |
result = predict_news(news_text)
|
755 |
+
|
756 |
+
# Results Section
|
757 |
+
st.markdown('<div class="main-content">', unsafe_allow_html=True)
|
758 |
+
|
759 |
col1, col2 = st.columns([1, 1], gap="large")
|
760 |
|
761 |
with col1:
|
762 |
+
st.markdown("### π Prediction Result")
|
763 |
if result['label'] == 'FAKE':
|
764 |
+
st.markdown(f'''
|
765 |
+
<div class="error-message">
|
766 |
+
π΄ <strong>FAKE NEWS DETECTED</strong><br>
|
767 |
+
Confidence: {result["confidence"]:.2%}
|
768 |
+
</div>
|
769 |
+
''', unsafe_allow_html=True)
|
770 |
else:
|
771 |
+
st.markdown(f'''
|
772 |
+
<div class="success-message">
|
773 |
+
π’ <strong>AUTHENTIC NEWS</strong><br>
|
774 |
+
Confidence: {result["confidence"]:.2%}
|
775 |
+
</div>
|
776 |
+
''', unsafe_allow_html=True)
|
777 |
|
778 |
with col2:
|
779 |
+
st.markdown("### π Confidence Breakdown")
|
780 |
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
781 |
|
782 |
+
st.markdown("### π― Attention Analysis")
|
783 |
st.markdown("""
|
784 |
+
<p style="color: #64748b; text-align: center; margin-bottom: 2rem;">
|
785 |
+
The visualization below shows which words our AI model focused on while making its prediction.
|
786 |
+
Darker colors indicate higher attention weights.
|
787 |
</p>
|
788 |
""", unsafe_allow_html=True)
|
789 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
790 |
|
791 |
+
st.markdown("### π Detailed Analysis")
|
792 |
if result['label'] == 'FAKE':
|
793 |
st.markdown("""
|
794 |
+
<div class="result-card">
|
795 |
+
<h4 style="color: #ef4444; margin-bottom: 1rem;">β οΈ Fake News Indicators</h4>
|
796 |
+
<ul style="color: #64748b; line-height: 1.8;">
|
797 |
+
<li><strong>Linguistic Patterns:</strong> The model detected language patterns commonly associated with misinformation</li>
|
798 |
+
<li><strong>Content Inconsistencies:</strong> Identified potential factual inconsistencies or misleading statements</li>
|
799 |
+
<li><strong>Attention Analysis:</strong> High attention weights on suspicious phrases and emotionally charged language</li>
|
800 |
+
<li><strong>Structural Analysis:</strong> Text structure and flow patterns typical of fabricated content</li>
|
801 |
</ul>
|
802 |
+
<p style="color: #7c3aed; font-weight: 500; margin-top: 1rem;">
|
803 |
+
π‘ <strong>Recommendation:</strong> Verify this information through multiple reliable sources before sharing.
|
804 |
+
</p>
|
805 |
</div>
|
806 |
""", unsafe_allow_html=True)
|
807 |
else:
|
808 |
st.markdown("""
|
809 |
+
<div class="result-card">
|
810 |
+
<h4 style="color: #22c55e; margin-bottom: 1rem;">β
Authentic News Indicators</h4>
|
811 |
+
<ul style="color: #64748b; line-height: 1.8;">
|
812 |
+
<li><strong>Credible Language:</strong> Professional journalistic writing style and balanced reporting tone</li>
|
813 |
+
<li><strong>Factual Consistency:</strong> Information appears coherent and factually consistent</li>
|
814 |
+
<li><strong>Attention Analysis:</strong> Model focused on factual statements and objective reporting</li>
|
815 |
+
<li><strong>Structural Integrity:</strong> Well-structured content following standard news article format</li>
|
816 |
</ul>
|
817 |
+
<p style="color: #7c3aed; font-weight: 500; margin-top: 1rem;">
|
818 |
+
π‘ <strong>Note:</strong> While likely authentic, always cross-reference important news from multiple sources.
|
819 |
+
</p>
|
820 |
</div>
|
821 |
""", unsafe_allow_html=True)
|
822 |
+
|
823 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
824 |
else:
|
825 |
+
st.markdown('''
|
826 |
+
<div class="main-content">
|
827 |
+
<div class="error-message" style="text-align: center;">
|
828 |
+
β οΈ Please enter a news article to analyze
|
829 |
+
</div>
|
830 |
+
</div>
|
831 |
+
''', unsafe_allow_html=True)
|
832 |
+
|
833 |
+
# Footer
|
834 |
+
st.markdown("""
|
835 |
+
<div class="footer">
|
836 |
+
<div class="footer-content">
|
837 |
+
<h3 class="footer-title">TrueCheck AI</h3>
|
838 |
+
<p class="footer-text">
|
839 |
+
Empowering users with AI-driven news verification technology.
|
840 |
+
Built with advanced deep learning models for accurate fake news detection.
|
841 |
+
</p>
|
842 |
+
<div class="footer-links">
|
843 |
+
<a href="#" class="footer-link">About</a>
|
844 |
+
<a href="#" class="footer-link">How It Works</a>
|
845 |
+
<a href="#" class="footer-link">Privacy Policy</a>
|
846 |
+
<a href="#" class="footer-link">Contact</a>
|
847 |
+
</div>
|
848 |
+
<div class="footer-bottom">
|
849 |
+
<p>© 2025 TrueCheck AI. Built with β€οΈ using Streamlit, BERT, and PyTorch.</p>
|
850 |
+
<p>Disclaimer: This tool provides AI-based analysis. Always verify important information through multiple sources.</p>
|
851 |
+
</div>
|
852 |
+
</div>
|
853 |
+
</div>
|
854 |
+
""", unsafe_allow_html=True)
|
855 |
|
856 |
if __name__ == "__main__":
|
857 |
main()
|