Spaces:
Sleeping
Sleeping
Update src/app.py
Browse files- src/app.py +113 -74
src/app.py
CHANGED
@@ -35,11 +35,11 @@ from src.models.hybrid_model import HybridFakeNewsDetector
|
|
35 |
from src.config.config import *
|
36 |
from src.data.preprocessor import TextPreprocessor
|
37 |
|
38 |
-
# Custom CSS for
|
39 |
st.markdown("""
|
40 |
<style>
|
41 |
/* Import Google Fonts */
|
42 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
43 |
|
44 |
/* Global Styles */
|
45 |
* {
|
@@ -50,9 +50,9 @@ st.markdown("""
|
|
50 |
|
51 |
.stApp {
|
52 |
font-family: 'Inter', sans-serif;
|
53 |
-
background: #
|
54 |
min-height: 100vh;
|
55 |
-
color: #
|
56 |
}
|
57 |
|
58 |
/* Hide Streamlit elements */
|
@@ -64,37 +64,45 @@ st.markdown("""
|
|
64 |
|
65 |
/* Container */
|
66 |
.container {
|
67 |
-
max-width:
|
68 |
margin: 0 auto;
|
69 |
-
padding: 2rem;
|
70 |
}
|
71 |
|
72 |
/* Header */
|
73 |
.header {
|
74 |
background: #ffffff;
|
75 |
-
padding:
|
76 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.
|
77 |
position: sticky;
|
78 |
top: 0;
|
79 |
z-index: 1000;
|
80 |
}
|
81 |
|
82 |
.header-title {
|
83 |
-
font-size:
|
84 |
-
font-weight:
|
85 |
color: #1a202c;
|
|
|
|
|
|
|
86 |
}
|
87 |
|
88 |
/* Hero Section */
|
89 |
.hero {
|
90 |
display: flex;
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
}
|
94 |
|
95 |
.hero-left {
|
96 |
flex: 1;
|
97 |
-
padding:
|
98 |
}
|
99 |
|
100 |
.hero-right {
|
@@ -108,95 +116,117 @@ st.markdown("""
|
|
108 |
max-width: 100%;
|
109 |
height: auto;
|
110 |
border-radius: 12px;
|
111 |
-
box-shadow: 0
|
|
|
|
|
|
|
|
|
|
|
112 |
}
|
113 |
|
114 |
.hero-title {
|
115 |
-
font-size:
|
116 |
-
font-weight:
|
117 |
color: #1a202c;
|
118 |
-
margin-bottom:
|
|
|
119 |
}
|
120 |
|
121 |
.hero-text {
|
122 |
-
font-size: 1.
|
123 |
color: #4a5568;
|
124 |
-
line-height: 1.
|
|
|
125 |
}
|
126 |
|
127 |
/* About Section */
|
128 |
.about-section {
|
129 |
margin-bottom: 3rem;
|
130 |
text-align: center;
|
|
|
131 |
}
|
132 |
|
133 |
.about-title {
|
134 |
-
font-size: 2rem;
|
135 |
-
font-weight:
|
136 |
color: #1a202c;
|
137 |
margin-bottom: 1rem;
|
138 |
}
|
139 |
|
140 |
.about-text {
|
141 |
-
font-size: 1rem;
|
142 |
color: #4a5568;
|
143 |
line-height: 1.6;
|
144 |
-
max-width:
|
145 |
margin: 0 auto;
|
146 |
}
|
147 |
|
148 |
/* Input Section */
|
149 |
.input-container {
|
150 |
-
max-width:
|
151 |
margin: 0 auto;
|
|
|
|
|
|
|
|
|
152 |
}
|
153 |
|
154 |
.stTextArea > div > div > textarea {
|
155 |
-
border-radius:
|
156 |
-
border: 1px solid #
|
157 |
-
padding:
|
158 |
font-size: 1rem !important;
|
159 |
font-family: 'Inter', sans-serif !important;
|
160 |
-
background: #
|
161 |
-
min-height:
|
|
|
162 |
}
|
163 |
|
164 |
.stTextArea > div > div > textarea:focus {
|
165 |
-
border-color: #
|
166 |
-
box-shadow: 0 0 0 3px rgba(
|
167 |
outline: none !important;
|
168 |
}
|
169 |
|
|
|
|
|
|
|
|
|
|
|
170 |
.stButton > button {
|
171 |
-
background: #
|
172 |
color: white !important;
|
173 |
-
border-radius:
|
174 |
-
padding: 0.
|
175 |
-
font-size: 1rem !important;
|
176 |
-
font-weight:
|
177 |
font-family: 'Inter', sans-serif !important;
|
178 |
transition: all 0.3s ease !important;
|
|
|
179 |
width: 100% !important;
|
|
|
180 |
}
|
181 |
|
182 |
.stButton > button:hover {
|
183 |
-
background: #
|
184 |
transform: translateY(-2px) !important;
|
|
|
185 |
}
|
186 |
|
187 |
/* Results Section */
|
188 |
.results-container {
|
189 |
margin-top: 2rem;
|
190 |
-
padding:
|
191 |
background: #ffffff;
|
192 |
border-radius: 12px;
|
193 |
-
box-shadow: 0
|
194 |
}
|
195 |
|
196 |
.result-card {
|
197 |
padding: 1.5rem;
|
198 |
-
border-radius:
|
199 |
-
border-left:
|
|
|
200 |
}
|
201 |
|
202 |
.fake-news {
|
@@ -205,36 +235,41 @@ st.markdown("""
|
|
205 |
}
|
206 |
|
207 |
.real-news {
|
208 |
-
background: #
|
209 |
-
border-left-color: #
|
210 |
}
|
211 |
|
212 |
.prediction-badge {
|
213 |
font-weight: 600;
|
214 |
-
font-size: 1rem;
|
215 |
margin-bottom: 1rem;
|
|
|
|
|
|
|
216 |
}
|
217 |
|
218 |
.confidence-score {
|
219 |
font-weight: 600;
|
220 |
margin-left: auto;
|
|
|
221 |
}
|
222 |
|
223 |
/* Chart Containers */
|
224 |
.chart-container {
|
225 |
padding: 1.5rem;
|
226 |
-
border-radius:
|
227 |
background: #ffffff;
|
228 |
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05);
|
229 |
-
margin:
|
230 |
}
|
231 |
|
232 |
/* Footer */
|
233 |
.footer {
|
234 |
-
margin-top:
|
235 |
-
padding:
|
236 |
text-align: center;
|
237 |
-
border-top: 1px solid #
|
|
|
238 |
}
|
239 |
</style>
|
240 |
""", unsafe_allow_html=True)
|
@@ -304,17 +339,18 @@ def plot_confidence(probabilities):
|
|
304 |
text=[f'{p:.1%}' for p in probabilities.values()],
|
305 |
textposition='auto',
|
306 |
marker=dict(
|
307 |
-
color=['#
|
308 |
line=dict(color='#ffffff', width=1),
|
309 |
),
|
310 |
)
|
311 |
])
|
312 |
fig.update_layout(
|
313 |
-
title={'text': 'Prediction Confidence', 'x': 0.5, 'xanchor': 'center'},
|
314 |
-
xaxis=dict(title='Classification'),
|
315 |
-
yaxis=dict(title='Probability', range=[0, 1], tickformat='.0%'),
|
316 |
template='plotly_white',
|
317 |
-
height=
|
|
|
318 |
)
|
319 |
return fig
|
320 |
|
@@ -325,7 +361,7 @@ def plot_attention(text, attention_weights):
|
|
325 |
if isinstance(attention_weights, (list, np.ndarray)):
|
326 |
attention_weights = np.array(attention_weights).flatten()
|
327 |
normalized_weights = attention_weights / max(attention_weights) if max(attention_weights) > 0 else attention_weights
|
328 |
-
colors = [f'rgba(
|
329 |
fig = go.Figure(data=[
|
330 |
go.Bar(
|
331 |
x=tokens,
|
@@ -336,11 +372,12 @@ def plot_attention(text, attention_weights):
|
|
336 |
)
|
337 |
])
|
338 |
fig.update_layout(
|
339 |
-
title={'text': 'Attention Weights', 'x': 0.5, 'xanchor': 'center'},
|
340 |
-
xaxis=dict(title='Words', tickangle=45),
|
341 |
-
yaxis=dict(title='Attention Score'),
|
342 |
-
template='plotly_white',
|
343 |
-
height=400
|
|
|
344 |
)
|
345 |
return fig
|
346 |
|
@@ -349,7 +386,7 @@ def main():
|
|
349 |
st.markdown("""
|
350 |
<div class="header">
|
351 |
<div class="container">
|
352 |
-
<h1 class="header-title"
|
353 |
</div>
|
354 |
</div>
|
355 |
""", unsafe_allow_html=True)
|
@@ -359,9 +396,9 @@ def main():
|
|
359 |
<div class="container">
|
360 |
<div class="hero">
|
361 |
<div class="hero-left">
|
362 |
-
<h2 class="hero-title">
|
363 |
<p class="hero-text">
|
364 |
-
|
365 |
</p>
|
366 |
</div>
|
367 |
<div class="hero-right">
|
@@ -377,7 +414,7 @@ def main():
|
|
377 |
<div class="about-section">
|
378 |
<h2 class="about-title">About TruthCheck</h2>
|
379 |
<p class="about-text">
|
380 |
-
TruthCheck
|
381 |
</p>
|
382 |
</div>
|
383 |
</div>
|
@@ -386,9 +423,9 @@ def main():
|
|
386 |
# Input Section
|
387 |
st.markdown('<div class="container"><div class="input-container">', unsafe_allow_html=True)
|
388 |
news_text = st.text_area(
|
389 |
-
"
|
390 |
-
height=
|
391 |
-
placeholder="Paste your news article here for AI analysis...",
|
392 |
key="news_input"
|
393 |
)
|
394 |
st.markdown('</div>', unsafe_allow_html=True)
|
@@ -397,7 +434,7 @@ def main():
|
|
397 |
st.markdown('<div class="container">', unsafe_allow_html=True)
|
398 |
col1, col2, col3 = st.columns([1, 2, 1])
|
399 |
with col2:
|
400 |
-
analyze_button = st.button("Analyze
|
401 |
st.markdown('</div>', unsafe_allow_html=True)
|
402 |
|
403 |
if analyze_button:
|
@@ -408,20 +445,20 @@ def main():
|
|
408 |
st.markdown('<div class="container"><div class="results-container">', unsafe_allow_html=True)
|
409 |
|
410 |
# Prediction Result
|
411 |
-
col1, col2 = st.columns([1, 1])
|
412 |
with col1:
|
413 |
if result['label'] == 'FAKE':
|
414 |
st.markdown(f'''
|
415 |
<div class="result-card fake-news">
|
416 |
-
<div class="prediction-badge"
|
417 |
-
<p>Our AI
|
418 |
</div>
|
419 |
''', unsafe_allow_html=True)
|
420 |
else:
|
421 |
st.markdown(f'''
|
422 |
<div class="result-card real-news">
|
423 |
-
<div class="prediction-badge"
|
424 |
-
<p>This content appears to be legitimate
|
425 |
</div>
|
426 |
''', unsafe_allow_html=True)
|
427 |
|
@@ -435,7 +472,9 @@ def main():
|
|
435 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
436 |
st.markdown('</div></div></div>', unsafe_allow_html=True)
|
437 |
except Exception as e:
|
|
|
438 |
st.error(f"Error: {str(e)}. Please try again or contact support.")
|
|
|
439 |
else:
|
440 |
st.markdown('<div class="container">', unsafe_allow_html=True)
|
441 |
st.error("Please enter a news article (at least 10 words) for analysis.")
|
@@ -444,7 +483,7 @@ def main():
|
|
444 |
# Footer
|
445 |
st.markdown("""
|
446 |
<div class="footer">
|
447 |
-
<p style="text-align: center; font-weight: 600; font-size: 16px;">💻 Developed with ❤️ using Streamlit | ©
|
448 |
</div>
|
449 |
""", unsafe_allow_html=True)
|
450 |
|
|
|
35 |
from src.config.config import *
|
36 |
from src.data.preprocessor import TextPreprocessor
|
37 |
|
38 |
+
# Custom CSS for enhanced, modern styling
|
39 |
st.markdown("""
|
40 |
<style>
|
41 |
/* Import Google Fonts */
|
42 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap');
|
43 |
|
44 |
/* Global Styles */
|
45 |
* {
|
|
|
50 |
|
51 |
.stApp {
|
52 |
font-family: 'Inter', sans-serif;
|
53 |
+
background: #ffffff;
|
54 |
min-height: 100vh;
|
55 |
+
color: #1a202c;
|
56 |
}
|
57 |
|
58 |
/* Hide Streamlit elements */
|
|
|
64 |
|
65 |
/* Container */
|
66 |
.container {
|
67 |
+
max-width: 1280px;
|
68 |
margin: 0 auto;
|
69 |
+
padding: 2rem 1.5rem;
|
70 |
}
|
71 |
|
72 |
/* Header */
|
73 |
.header {
|
74 |
background: #ffffff;
|
75 |
+
padding: 1rem 2rem;
|
76 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.08);
|
77 |
position: sticky;
|
78 |
top: 0;
|
79 |
z-index: 1000;
|
80 |
}
|
81 |
|
82 |
.header-title {
|
83 |
+
font-size: 2rem;
|
84 |
+
font-weight: 800;
|
85 |
color: #1a202c;
|
86 |
+
display: flex;
|
87 |
+
align-items: center;
|
88 |
+
gap: 0.5rem;
|
89 |
}
|
90 |
|
91 |
/* Hero Section */
|
92 |
.hero {
|
93 |
display: flex;
|
94 |
+
align-items: center;
|
95 |
+
gap: 3rem;
|
96 |
+
margin-bottom: 4rem;
|
97 |
+
background: linear-gradient(135deg, #f8fafc 0%, #edf2f7 100%);
|
98 |
+
padding: 4rem 2rem;
|
99 |
+
border-radius: 16px;
|
100 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
|
101 |
}
|
102 |
|
103 |
.hero-left {
|
104 |
flex: 1;
|
105 |
+
padding: 1rem;
|
106 |
}
|
107 |
|
108 |
.hero-right {
|
|
|
116 |
max-width: 100%;
|
117 |
height: auto;
|
118 |
border-radius: 12px;
|
119 |
+
box-shadow: 0 8px 24px rgba(0, 0, 0, 0.1);
|
120 |
+
transition: transform 0.3s ease;
|
121 |
+
}
|
122 |
+
|
123 |
+
.hero-right img:hover {
|
124 |
+
transform: scale(1.02);
|
125 |
}
|
126 |
|
127 |
.hero-title {
|
128 |
+
font-size: 3rem;
|
129 |
+
font-weight: 800;
|
130 |
color: #1a202c;
|
131 |
+
margin-bottom: 1.5rem;
|
132 |
+
line-height: 1.2;
|
133 |
}
|
134 |
|
135 |
.hero-text {
|
136 |
+
font-size: 1.2rem;
|
137 |
color: #4a5568;
|
138 |
+
line-height: 1.7;
|
139 |
+
max-width: 500px;
|
140 |
}
|
141 |
|
142 |
/* About Section */
|
143 |
.about-section {
|
144 |
margin-bottom: 3rem;
|
145 |
text-align: center;
|
146 |
+
padding: 2rem;
|
147 |
}
|
148 |
|
149 |
.about-title {
|
150 |
+
font-size: 2.2rem;
|
151 |
+
font-weight: 700;
|
152 |
color: #1a202c;
|
153 |
margin-bottom: 1rem;
|
154 |
}
|
155 |
|
156 |
.about-text {
|
157 |
+
font-size: 1.1rem;
|
158 |
color: #4a5568;
|
159 |
line-height: 1.6;
|
160 |
+
max-width: 700px;
|
161 |
margin: 0 auto;
|
162 |
}
|
163 |
|
164 |
/* Input Section */
|
165 |
.input-container {
|
166 |
+
max-width: 900px;
|
167 |
margin: 0 auto;
|
168 |
+
padding: 1.5rem;
|
169 |
+
background: #ffffff;
|
170 |
+
border-radius: 12px;
|
171 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
|
172 |
}
|
173 |
|
174 |
.stTextArea > div > div > textarea {
|
175 |
+
border-radius: 10px !important;
|
176 |
+
border: 1px solid #d1d5db !important;
|
177 |
+
padding: 1.2rem !important;
|
178 |
font-size: 1rem !important;
|
179 |
font-family: 'Inter', sans-serif !important;
|
180 |
+
background: #f9fafb !important;
|
181 |
+
min-height: 180px !important;
|
182 |
+
transition: all 0.3s ease !important;
|
183 |
}
|
184 |
|
185 |
.stTextArea > div > div > textarea:focus {
|
186 |
+
border-color: #6366f1 !important;
|
187 |
+
box-shadow: 0 0 0 3px rgba(99, 102, 241, 0.1) !important;
|
188 |
outline: none !important;
|
189 |
}
|
190 |
|
191 |
+
.stTextArea > div > div > textarea::placeholder {
|
192 |
+
color: #9ca3af !important;
|
193 |
+
}
|
194 |
+
|
195 |
+
/* Button Styling */
|
196 |
.stButton > button {
|
197 |
+
background: linear-gradient(135deg, #6366f1 0%, #4f46e5 100%) !important;
|
198 |
color: white !important;
|
199 |
+
border-radius: 10px !important;
|
200 |
+
padding: 0.8rem 2.5rem !important;
|
201 |
+
font-size: 1.1rem !important;
|
202 |
+
font-weight: 600 !important;
|
203 |
font-family: 'Inter', sans-serif !important;
|
204 |
transition: all 0.3s ease !important;
|
205 |
+
box-shadow: 0 4px 12px rgba(99, 102, 241, 0.3) !important;
|
206 |
width: 100% !important;
|
207 |
+
border: none !important;
|
208 |
}
|
209 |
|
210 |
.stButton > button:hover {
|
211 |
+
background: linear-gradient(135deg, #4f46e5 0%, #4338ca 100%) !important;
|
212 |
transform: translateY(-2px) !important;
|
213 |
+
box-shadow: 0 6px 16px rgba(99, 102, 241, 0.4) !important;
|
214 |
}
|
215 |
|
216 |
/* Results Section */
|
217 |
.results-container {
|
218 |
margin-top: 2rem;
|
219 |
+
padding: 2rem;
|
220 |
background: #ffffff;
|
221 |
border-radius: 12px;
|
222 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
|
223 |
}
|
224 |
|
225 |
.result-card {
|
226 |
padding: 1.5rem;
|
227 |
+
border-radius: 10px;
|
228 |
+
border-left: 5px solid transparent;
|
229 |
+
margin-bottom: 1rem;
|
230 |
}
|
231 |
|
232 |
.fake-news {
|
|
|
235 |
}
|
236 |
|
237 |
.real-news {
|
238 |
+
background: #ecfdf5;
|
239 |
+
border-left-color: #10b981;
|
240 |
}
|
241 |
|
242 |
.prediction-badge {
|
243 |
font-weight: 600;
|
244 |
+
font-size: 1.1rem;
|
245 |
margin-bottom: 1rem;
|
246 |
+
display: flex;
|
247 |
+
align-items: center;
|
248 |
+
gap: 0.5rem;
|
249 |
}
|
250 |
|
251 |
.confidence-score {
|
252 |
font-weight: 600;
|
253 |
margin-left: auto;
|
254 |
+
font-size: 1.1rem;
|
255 |
}
|
256 |
|
257 |
/* Chart Containers */
|
258 |
.chart-container {
|
259 |
padding: 1.5rem;
|
260 |
+
border-radius: 10px;
|
261 |
background: #ffffff;
|
262 |
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05);
|
263 |
+
margin: 1.5rem 0;
|
264 |
}
|
265 |
|
266 |
/* Footer */
|
267 |
.footer {
|
268 |
+
margin-top: 4rem;
|
269 |
+
padding: 1.5rem;
|
270 |
text-align: center;
|
271 |
+
border-top: 1px solid #e5e7eb;
|
272 |
+
background: #f8fafc;
|
273 |
}
|
274 |
</style>
|
275 |
""", unsafe_allow_html=True)
|
|
|
339 |
text=[f'{p:.1%}' for p in probabilities.values()],
|
340 |
textposition='auto',
|
341 |
marker=dict(
|
342 |
+
color=['#10b981', '#ef4444'],
|
343 |
line=dict(color='#ffffff', width=1),
|
344 |
),
|
345 |
)
|
346 |
])
|
347 |
fig.update_layout(
|
348 |
+
title={'text': 'Prediction Confidence', 'x': 0.5, 'xanchor': 'center', 'font': {'size': 20}},
|
349 |
+
xaxis=dict(title='Classification', titlefont={'size': 14}, tickfont={'size': 12}),
|
350 |
+
yaxis=dict(title='Probability', range=[0, 1], tickformat='.0%', titlefont={'size': 14}, tickfont={'size': 12}),
|
351 |
template='plotly_white',
|
352 |
+
height=350,
|
353 |
+
margin=dict(t=80, b=80)
|
354 |
)
|
355 |
return fig
|
356 |
|
|
|
361 |
if isinstance(attention_weights, (list, np.ndarray)):
|
362 |
attention_weights = np.array(attention_weights).flatten()
|
363 |
normalized_weights = attention_weights / max(attention_weights) if max(attention_weights) > 0 else attention_weights
|
364 |
+
colors = [f'rgba(99, 102, 241, {0.4 + 0.6 * float(w)})' for w in normalized_weights]
|
365 |
fig = go.Figure(data=[
|
366 |
go.Bar(
|
367 |
x=tokens,
|
|
|
372 |
)
|
373 |
])
|
374 |
fig.update_layout(
|
375 |
+
title={'text': 'Attention Weights', 'x': 0.5, 'xanchor': 'center', 'font': {'size': 20}},
|
376 |
+
xaxis=dict(title='Words', tickangle=45, titlefont={'size': 14}, tickfont={'size': 12}),
|
377 |
+
yaxis=dict(title='Attention Score', titlefont={'size': 14}, tickfont={'size': 12}),
|
378 |
+
template='plotly_white/pubs/DeepSearch/2025-07-25/4f0e5e9c-7e3f-4d87-9b50-3d7f1c7f5e6a.txt',
|
379 |
+
height=400,
|
380 |
+
margin=dict(t=80, b=100)
|
381 |
)
|
382 |
return fig
|
383 |
|
|
|
386 |
st.markdown("""
|
387 |
<div class="header">
|
388 |
<div class="container">
|
389 |
+
<h1 class="header-title">🛡️ TruthCheck</h1>
|
390 |
</div>
|
391 |
</div>
|
392 |
""", unsafe_allow_html=True)
|
|
|
396 |
<div class="container">
|
397 |
<div class="hero">
|
398 |
<div class="hero-left">
|
399 |
+
<h2 class="hero-title">Instant Fake News Detection</h2>
|
400 |
<p class="hero-text">
|
401 |
+
Discover the truth behind news articles with our cutting-edge AI. Powered by a hybrid BERT-BiLSTM model, TruthCheck delivers fast, accurate, and transparent analysis of news authenticity.
|
402 |
</p>
|
403 |
</div>
|
404 |
<div class="hero-right">
|
|
|
414 |
<div class="about-section">
|
415 |
<h2 class="about-title">About TruthCheck</h2>
|
416 |
<p class="about-text">
|
417 |
+
TruthCheck combines advanced BERT and BiLSTM technologies to detect fake news with over 95% accuracy. Paste any news article below to receive a detailed analysis, including confidence scores and attention insights, in seconds.
|
418 |
</p>
|
419 |
</div>
|
420 |
</div>
|
|
|
423 |
# Input Section
|
424 |
st.markdown('<div class="container"><div class="input-container">', unsafe_allow_html=True)
|
425 |
news_text = st.text_area(
|
426 |
+
"Analyze a News Article",
|
427 |
+
height=180,
|
428 |
+
placeholder="Paste your news article here for instant AI analysis...",
|
429 |
key="news_input"
|
430 |
)
|
431 |
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
434 |
st.markdown('<div class="container">', unsafe_allow_html=True)
|
435 |
col1, col2, col3 = st.columns([1, 2, 1])
|
436 |
with col2:
|
437 |
+
analyze_button = st.button("🔍 Analyze Now", key="analyze_button")
|
438 |
st.markdown('</div>', unsafe_allow_html=True)
|
439 |
|
440 |
if analyze_button:
|
|
|
445 |
st.markdown('<div class="container"><div class="results-container">', unsafe_allow_html=True)
|
446 |
|
447 |
# Prediction Result
|
448 |
+
col1, col2 = st.columns([1, 1], gap="medium")
|
449 |
with col1:
|
450 |
if result['label'] == 'FAKE':
|
451 |
st.markdown(f'''
|
452 |
<div class="result-card fake-news">
|
453 |
+
<div class="prediction-badge">🚨 Fake News Detected <span class="confidence-score">{result["confidence"]:.1%}</span></div>
|
454 |
+
<p>Our AI has identified this content as likely misinformation based on linguistic patterns, structural analysis, and content inconsistencies.</p>
|
455 |
</div>
|
456 |
''', unsafe_allow_html=True)
|
457 |
else:
|
458 |
st.markdown(f'''
|
459 |
<div class="result-card real-news">
|
460 |
+
<div class="prediction-badge">✅ Authentic News <span class="confidence-score">{result["confidence"]:.1%}</span></div>
|
461 |
+
<p>This content appears to be legitimate based on professional writing style, factual consistency, and structural integrity.</p>
|
462 |
</div>
|
463 |
''', unsafe_allow_html=True)
|
464 |
|
|
|
472 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
473 |
st.markdown('</div></div></div>', unsafe_allow_html=True)
|
474 |
except Exception as e:
|
475 |
+
st.markdown('<div class="container">', unsafe_allow_html=True)
|
476 |
st.error(f"Error: {str(e)}. Please try again or contact support.")
|
477 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
478 |
else:
|
479 |
st.markdown('<div class="container">', unsafe_allow_html=True)
|
480 |
st.error("Please enter a news article (at least 10 words) for analysis.")
|
|
|
483 |
# Footer
|
484 |
st.markdown("""
|
485 |
<div class="footer">
|
486 |
+
<p style="text-align: center; font-weight: 600; font-size: 16px;">💻 Developed with ❤️ using Streamlit | © 2025</p>
|
487 |
</div>
|
488 |
""", unsafe_allow_html=True)
|
489 |
|