Spaces:
Sleeping
Sleeping
Update src/app.py (#16)
Browse files- Update src/app.py (0bdecbdedf37f3eac4baae41d6bfcbb18c81068b)
Co-authored-by: Muhammad Khaqan Nasir <[email protected]>
- src/app.py +172 -854
src/app.py
CHANGED
@@ -35,577 +35,206 @@ from src.models.hybrid_model import HybridFakeNewsDetector
|
|
35 |
from src.config.config import *
|
36 |
from src.data.preprocessor import TextPreprocessor
|
37 |
|
38 |
-
# Custom CSS for
|
39 |
st.markdown("""
|
40 |
<style>
|
41 |
/* Import Google Fonts */
|
42 |
-
@import url('https://fonts.googleapis.com/css2?family=
|
43 |
-
|
44 |
/* Global Styles */
|
45 |
* {
|
46 |
margin: 0;
|
47 |
padding: 0;
|
48 |
box-sizing: border-box;
|
49 |
}
|
50 |
-
|
51 |
-
.main {
|
52 |
-
padding: 0 !important;
|
53 |
-
max-width: 100% !important;
|
54 |
-
}
|
55 |
-
|
56 |
.stApp {
|
57 |
-
font-family: 'Inter',
|
58 |
-
background:
|
59 |
min-height: 100vh;
|
60 |
color: #2d3748;
|
61 |
}
|
62 |
-
|
63 |
/* Hide Streamlit elements */
|
64 |
#MainMenu {visibility: hidden;}
|
65 |
footer {visibility: hidden;}
|
66 |
.stDeployButton {display: none;}
|
67 |
header {visibility: hidden;}
|
68 |
.stApp > header {visibility: hidden;}
|
69 |
-
|
70 |
-
/*
|
71 |
-
.
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
position: sticky;
|
77 |
top: 0;
|
78 |
z-index: 1000;
|
79 |
-
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
80 |
}
|
81 |
-
|
82 |
-
.
|
83 |
-
font-family: 'Poppins', sans-serif;
|
84 |
font-size: 1.8rem;
|
85 |
-
font-weight:
|
86 |
-
|
87 |
-
-webkit-background-clip: text;
|
88 |
-
-webkit-text-fill-color: transparent;
|
89 |
-
background-clip: text;
|
90 |
-
display: inline-flex;
|
91 |
-
align-items: center;
|
92 |
-
gap: 0.5rem;
|
93 |
}
|
94 |
-
|
95 |
/* Hero Section */
|
96 |
-
.hero
|
97 |
-
|
98 |
-
|
99 |
-
text-align: center;
|
100 |
-
color: white;
|
101 |
-
position: relative;
|
102 |
-
overflow: hidden;
|
103 |
-
}
|
104 |
-
|
105 |
-
.hero-container::before {
|
106 |
-
content: '';
|
107 |
-
position: absolute;
|
108 |
-
top: 0;
|
109 |
-
left: 0;
|
110 |
-
right: 0;
|
111 |
-
bottom: 0;
|
112 |
-
background: url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1000 1000"><defs><radialGradient id="a" cx="50%" cy="50%"><stop offset="0%" stop-color="%23fff" stop-opacity="0.1"/><stop offset="100%" stop-color="%23fff" stop-opacity="0"/></radialGradient></defs><circle cx="200" cy="200" r="100" fill="url(%23a)"/><circle cx="800" cy="300" r="150" fill="url(%23a)"/><circle cx="400" cy="700" r="120" fill="url(%23a)"/></svg>');
|
113 |
-
pointer-events: none;
|
114 |
-
}
|
115 |
-
|
116 |
-
.hero-content {
|
117 |
-
position: relative;
|
118 |
-
z-index: 2;
|
119 |
-
max-width: 800px;
|
120 |
-
margin: 0 auto;
|
121 |
-
}
|
122 |
-
|
123 |
-
.hero-badge {
|
124 |
-
display: inline-flex;
|
125 |
-
align-items: center;
|
126 |
-
gap: 0.5rem;
|
127 |
-
background: rgba(255, 255, 255, 0.2);
|
128 |
-
padding: 0.5rem 1.5rem;
|
129 |
-
border-radius: 50px;
|
130 |
-
font-size: 0.9rem;
|
131 |
-
font-weight: 500;
|
132 |
-
margin-bottom: 2rem;
|
133 |
-
backdrop-filter: blur(10px);
|
134 |
-
border: 1px solid rgba(255, 255, 255, 0.3);
|
135 |
-
}
|
136 |
-
|
137 |
-
.hero-title {
|
138 |
-
font-family: 'Poppins', sans-serif;
|
139 |
-
font-size: 4.5rem;
|
140 |
-
font-weight: 900;
|
141 |
-
margin-bottom: 1.5rem;
|
142 |
-
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
143 |
-
background: linear-gradient(45deg, #fff, #e0e7ff, #fff);
|
144 |
-
-webkit-background-clip: text;
|
145 |
-
-webkit-text-fill-color: transparent;
|
146 |
-
background-clip: text;
|
147 |
-
line-height: 1.1;
|
148 |
-
}
|
149 |
-
|
150 |
-
.hero-subtitle {
|
151 |
-
font-size: 1.4rem;
|
152 |
-
font-weight: 400;
|
153 |
margin-bottom: 3rem;
|
154 |
-
opacity: 0.95;
|
155 |
-
line-height: 1.7;
|
156 |
-
max-width: 700px;
|
157 |
-
margin-left: auto;
|
158 |
-
margin-right: auto;
|
159 |
}
|
160 |
-
|
161 |
-
.hero-
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
display: flex;
|
|
|
163 |
justify-content: center;
|
164 |
-
gap: 3rem;
|
165 |
-
margin-top: 2rem;
|
166 |
}
|
167 |
-
|
168 |
-
.
|
169 |
-
|
|
|
|
|
|
|
170 |
}
|
171 |
-
|
172 |
-
.
|
173 |
font-size: 2.5rem;
|
174 |
font-weight: 700;
|
175 |
-
display: block;
|
176 |
-
}
|
177 |
-
|
178 |
-
.stat-label {
|
179 |
-
font-size: 0.9rem;
|
180 |
-
opacity: 0.8;
|
181 |
-
}
|
182 |
-
|
183 |
-
/* Features Section */
|
184 |
-
.features-section {
|
185 |
-
padding: 5rem 2rem;
|
186 |
-
background: #f8fafc;
|
187 |
-
position: relative;
|
188 |
-
}
|
189 |
-
|
190 |
-
.section-header {
|
191 |
-
text-align: center;
|
192 |
-
margin-bottom: 4rem;
|
193 |
-
}
|
194 |
-
|
195 |
-
.section-badge {
|
196 |
-
display: inline-flex;
|
197 |
-
align-items: center;
|
198 |
-
gap: 0.5rem;
|
199 |
-
background: linear-gradient(135deg, #667eea, #764ba2);
|
200 |
-
color: white;
|
201 |
-
padding: 0.5rem 1.5rem;
|
202 |
-
border-radius: 50px;
|
203 |
-
font-size: 0.85rem;
|
204 |
-
font-weight: 600;
|
205 |
-
margin-bottom: 1rem;
|
206 |
-
text-transform: uppercase;
|
207 |
-
letter-spacing: 0.5px;
|
208 |
-
}
|
209 |
-
|
210 |
-
.section-title {
|
211 |
-
font-family: 'Poppins', sans-serif;
|
212 |
-
font-size: 3rem;
|
213 |
-
font-weight: 700;
|
214 |
color: #1a202c;
|
215 |
margin-bottom: 1rem;
|
216 |
-
line-height: 1.2;
|
217 |
}
|
218 |
-
|
219 |
-
.
|
220 |
-
font-size: 1.
|
221 |
color: #4a5568;
|
222 |
-
max-width: 600px;
|
223 |
-
margin: 0 auto;
|
224 |
line-height: 1.6;
|
225 |
}
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
gap: 2rem;
|
231 |
-
max-width: 1200px;
|
232 |
-
margin: 0 auto;
|
233 |
-
}
|
234 |
-
|
235 |
-
.feature-card {
|
236 |
-
background: white;
|
237 |
-
padding: 2.5rem;
|
238 |
-
border-radius: 20px;
|
239 |
text-align: center;
|
240 |
-
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
|
241 |
-
border: 1px solid #e2e8f0;
|
242 |
-
position: relative;
|
243 |
-
overflow: hidden;
|
244 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
245 |
-
}
|
246 |
-
|
247 |
-
.feature-card::before {
|
248 |
-
content: '';
|
249 |
-
position: absolute;
|
250 |
-
top: 0;
|
251 |
-
left: 0;
|
252 |
-
right: 0;
|
253 |
-
height: 4px;
|
254 |
-
background: linear-gradient(135deg, #667eea, #764ba2);
|
255 |
-
}
|
256 |
-
|
257 |
-
.feature-card:hover {
|
258 |
-
transform: translateY(-12px);
|
259 |
-
box-shadow: 0 25px 50px rgba(0, 0, 0, 0.15);
|
260 |
-
border-color: #667eea;
|
261 |
-
}
|
262 |
-
|
263 |
-
.feature-icon {
|
264 |
-
font-size: 3.5rem;
|
265 |
-
margin-bottom: 1.5rem;
|
266 |
-
display: block;
|
267 |
-
filter: drop-shadow(0 4px 8px rgba(0, 0, 0, 0.1));
|
268 |
}
|
269 |
-
|
270 |
-
.
|
271 |
-
font-
|
272 |
-
font-size: 1.4rem;
|
273 |
font-weight: 600;
|
274 |
color: #1a202c;
|
275 |
margin-bottom: 1rem;
|
276 |
}
|
277 |
-
|
278 |
-
.
|
|
|
279 |
color: #4a5568;
|
280 |
line-height: 1.6;
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
/* Main Content Section */
|
285 |
-
.main-content {
|
286 |
-
background: white;
|
287 |
-
margin: 3rem 2rem;
|
288 |
-
padding: 4rem;
|
289 |
-
border-radius: 24px;
|
290 |
-
box-shadow: 0 20px 60px rgba(0, 0, 0, 0.1);
|
291 |
-
position: relative;
|
292 |
-
overflow: hidden;
|
293 |
-
}
|
294 |
-
|
295 |
-
.main-content::before {
|
296 |
-
content: '';
|
297 |
-
position: absolute;
|
298 |
-
top: 0;
|
299 |
-
left: 0;
|
300 |
-
right: 0;
|
301 |
-
height: 6px;
|
302 |
-
background: linear-gradient(135deg, #667eea, #764ba2, #6B73FF);
|
303 |
}
|
304 |
-
|
305 |
-
/* Input Section
|
306 |
.input-container {
|
307 |
max-width: 800px;
|
308 |
margin: 0 auto;
|
309 |
}
|
310 |
-
|
311 |
.stTextArea > div > div > textarea {
|
312 |
-
border-radius:
|
313 |
-
border:
|
314 |
-
padding:
|
315 |
-
font-size:
|
316 |
font-family: 'Inter', sans-serif !important;
|
317 |
-
|
318 |
-
|
319 |
-
resize: vertical !important;
|
320 |
-
min-height: 200px !important;
|
321 |
}
|
322 |
-
|
323 |
.stTextArea > div > div > textarea:focus {
|
324 |
border-color: #667eea !important;
|
325 |
-
box-shadow: 0 0 0
|
326 |
-
background: white !important;
|
327 |
outline: none !important;
|
328 |
}
|
329 |
-
|
330 |
-
.stTextArea > div > div > textarea::placeholder {
|
331 |
-
color: #a0aec0 !important;
|
332 |
-
font-style: italic !important;
|
333 |
-
}
|
334 |
-
|
335 |
-
/* Enhanced Button Styling */
|
336 |
.stButton > button {
|
337 |
-
background:
|
338 |
color: white !important;
|
339 |
-
border:
|
340 |
-
|
341 |
-
|
342 |
-
font-
|
343 |
-
font-
|
344 |
-
|
345 |
-
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
346 |
-
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4) !important;
|
347 |
width: 100% !important;
|
348 |
-
position: relative !important;
|
349 |
-
overflow: hidden !important;
|
350 |
}
|
351 |
-
|
352 |
.stButton > button:hover {
|
353 |
-
|
354 |
-
|
355 |
-
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%) !important;
|
356 |
-
}
|
357 |
-
|
358 |
-
.stButton > button:active {
|
359 |
-
transform: translateY(-1px) !important;
|
360 |
}
|
361 |
-
|
362 |
/* Results Section */
|
363 |
.results-container {
|
364 |
-
margin-top:
|
365 |
-
padding:
|
366 |
-
background:
|
367 |
-
border-radius:
|
368 |
-
|
369 |
}
|
370 |
-
|
371 |
.result-card {
|
372 |
-
|
373 |
-
|
374 |
-
border-
|
375 |
-
margin: 1.5rem 0;
|
376 |
-
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.08);
|
377 |
-
border-left: 6px solid transparent;
|
378 |
-
transition: all 0.3s ease;
|
379 |
-
}
|
380 |
-
|
381 |
-
.result-card:hover {
|
382 |
-
transform: translateY(-2px);
|
383 |
-
box-shadow: 0 12px 35px rgba(0, 0, 0, 0.12);
|
384 |
}
|
385 |
-
|
386 |
-
.prediction-badge {
|
387 |
-
display: inline-flex;
|
388 |
-
align-items: center;
|
389 |
-
gap: 0.75rem;
|
390 |
-
padding: 1rem 2rem;
|
391 |
-
border-radius: 50px;
|
392 |
-
font-weight: 700;
|
393 |
-
font-size: 1.1rem;
|
394 |
-
margin-bottom: 1rem;
|
395 |
-
}
|
396 |
-
|
397 |
.fake-news {
|
398 |
-
background:
|
399 |
-
color: #
|
400 |
-
border-left-color: #e53e3e;
|
401 |
}
|
402 |
-
|
403 |
.real-news {
|
404 |
-
background:
|
405 |
-
color: #2f855a;
|
406 |
border-left-color: #38a169;
|
407 |
}
|
408 |
-
|
409 |
-
.
|
410 |
-
font-size: 1.4rem;
|
411 |
-
font-weight: 700;
|
412 |
-
margin-left: auto;
|
413 |
-
}
|
414 |
-
|
415 |
-
/* Analysis Cards */
|
416 |
-
.analysis-grid {
|
417 |
-
display: grid;
|
418 |
-
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
419 |
-
gap: 2rem;
|
420 |
-
margin: 2rem 0;
|
421 |
-
}
|
422 |
-
|
423 |
-
.analysis-card {
|
424 |
-
background: white;
|
425 |
-
padding: 2rem;
|
426 |
-
border-radius: 16px;
|
427 |
-
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.08);
|
428 |
-
border-top: 4px solid #667eea;
|
429 |
-
}
|
430 |
-
|
431 |
-
.analysis-title {
|
432 |
-
font-family: 'Poppins', sans-serif;
|
433 |
-
font-size: 1.3rem;
|
434 |
font-weight: 600;
|
435 |
-
|
436 |
margin-bottom: 1rem;
|
437 |
-
display: flex;
|
438 |
-
align-items: center;
|
439 |
-
gap: 0.5rem;
|
440 |
-
}
|
441 |
-
|
442 |
-
.analysis-content {
|
443 |
-
color: #4a5568;
|
444 |
-
line-height: 1.6;
|
445 |
}
|
446 |
-
|
447 |
-
.
|
448 |
-
|
449 |
-
|
450 |
-
}
|
451 |
-
|
452 |
-
.analysis-list li {
|
453 |
-
padding: 0.5rem 0;
|
454 |
-
padding-left: 1.5rem;
|
455 |
-
position: relative;
|
456 |
-
border-bottom: 1px solid #f1f5f9;
|
457 |
-
}
|
458 |
-
|
459 |
-
.analysis-list li:before {
|
460 |
-
content: '✓';
|
461 |
-
position: absolute;
|
462 |
-
left: 0;
|
463 |
-
color: #667eea;
|
464 |
-
font-weight: bold;
|
465 |
-
}
|
466 |
-
|
467 |
-
.analysis-list li:last-child {
|
468 |
-
border-bottom: none;
|
469 |
}
|
470 |
-
|
471 |
/* Chart Containers */
|
472 |
.chart-container {
|
473 |
-
|
474 |
-
|
475 |
-
|
|
|
476 |
margin: 1rem 0;
|
477 |
-
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.05);
|
478 |
-
border: 1px solid #f1f5f9;
|
479 |
}
|
480 |
-
|
481 |
/* Footer */
|
482 |
.footer {
|
483 |
-
|
484 |
-
|
485 |
-
padding: 4rem 2rem 2rem;
|
486 |
text-align: center;
|
487 |
-
|
488 |
-
position: relative;
|
489 |
-
overflow: hidden;
|
490 |
-
}
|
491 |
-
|
492 |
-
.footer::before {
|
493 |
-
content: '';
|
494 |
-
position: absolute;
|
495 |
-
top: 0;
|
496 |
-
left: 0;
|
497 |
-
right: 0;
|
498 |
-
height: 6px;
|
499 |
-
background: linear-gradient(135deg, #667eea, #764ba2, #6B73FF);
|
500 |
-
}
|
501 |
-
|
502 |
-
.footer-content {
|
503 |
-
max-width: 1200px;
|
504 |
-
margin: 0 auto;
|
505 |
-
position: relative;
|
506 |
-
z-index: 2;
|
507 |
-
}
|
508 |
-
|
509 |
-
.footer-title {
|
510 |
-
font-family: 'Poppins', sans-serif;
|
511 |
-
font-size: 2rem;
|
512 |
-
font-weight: 700;
|
513 |
-
margin-bottom: 1rem;
|
514 |
-
background: linear-gradient(135deg, #667eea, #764ba2);
|
515 |
-
-webkit-background-clip: text;
|
516 |
-
-webkit-text-fill-color: transparent;
|
517 |
-
background-clip: text;
|
518 |
-
}
|
519 |
-
|
520 |
-
.footer-text {
|
521 |
-
color: #cbd5e0;
|
522 |
-
margin-bottom: 2rem;
|
523 |
-
line-height: 1.7;
|
524 |
-
font-size: 1.1rem;
|
525 |
-
}
|
526 |
-
|
527 |
-
.footer-links {
|
528 |
-
display: flex;
|
529 |
-
justify-content: center;
|
530 |
-
gap: 3rem;
|
531 |
-
margin-bottom: 3rem;
|
532 |
-
flex-wrap: wrap;
|
533 |
-
}
|
534 |
-
|
535 |
-
.footer-link {
|
536 |
-
color: #cbd5e0;
|
537 |
-
text-decoration: none;
|
538 |
-
transition: all 0.3s ease;
|
539 |
-
font-weight: 500;
|
540 |
-
padding: 0.5rem 1rem;
|
541 |
-
border-radius: 8px;
|
542 |
-
}
|
543 |
-
|
544 |
-
.footer-link:hover {
|
545 |
-
color: white;
|
546 |
-
background: rgba(102, 126, 234, 0.2);
|
547 |
-
transform: translateY(-2px);
|
548 |
-
}
|
549 |
-
|
550 |
-
.footer-bottom {
|
551 |
-
border-top: 1px solid #4a5568;
|
552 |
-
padding-top: 2rem;
|
553 |
-
color: #a0aec0;
|
554 |
-
font-size: 0.95rem;
|
555 |
-
line-height: 1.6;
|
556 |
-
}
|
557 |
-
|
558 |
-
/* Loading Spinner Custom */
|
559 |
-
.stSpinner > div {
|
560 |
-
border-color: #667eea transparent #667eea transparent !important;
|
561 |
-
}
|
562 |
-
|
563 |
-
/* Responsive Design */
|
564 |
-
@media (max-width: 768px) {
|
565 |
-
.hero-title {
|
566 |
-
font-size: 3rem;
|
567 |
-
}
|
568 |
-
|
569 |
-
.hero-stats {
|
570 |
-
flex-direction: column;
|
571 |
-
gap: 1.5rem;
|
572 |
-
}
|
573 |
-
|
574 |
-
.features-grid {
|
575 |
-
grid-template-columns: 1fr;
|
576 |
-
}
|
577 |
-
|
578 |
-
.main-content {
|
579 |
-
margin: 2rem 1rem;
|
580 |
-
padding: 2rem;
|
581 |
-
}
|
582 |
-
|
583 |
-
.section-title {
|
584 |
-
font-size: 2.2rem;
|
585 |
-
}
|
586 |
-
|
587 |
-
.footer-links {
|
588 |
-
flex-direction: column;
|
589 |
-
gap: 1rem;
|
590 |
-
}
|
591 |
-
|
592 |
-
.analysis-grid {
|
593 |
-
grid-template-columns: 1fr;
|
594 |
-
}
|
595 |
-
}
|
596 |
-
|
597 |
-
@media (max-width: 480px) {
|
598 |
-
.hero-title {
|
599 |
-
font-size: 2.5rem;
|
600 |
-
}
|
601 |
-
|
602 |
-
.section-title {
|
603 |
-
font-size: 2rem;
|
604 |
-
}
|
605 |
-
|
606 |
-
.feature-card {
|
607 |
-
padding: 2rem 1.5rem;
|
608 |
-
}
|
609 |
}
|
610 |
</style>
|
611 |
""", unsafe_allow_html=True)
|
@@ -667,466 +296,155 @@ def predict_news(text):
|
|
667 |
}
|
668 |
|
669 |
def plot_confidence(probabilities):
|
670 |
-
"""Plot prediction confidence with
|
671 |
-
colors = ['#22c55e', '#ef4444']
|
672 |
-
|
673 |
fig = go.Figure(data=[
|
674 |
go.Bar(
|
675 |
x=list(probabilities.keys()),
|
676 |
y=list(probabilities.values()),
|
677 |
text=[f'{p:.1%}' for p in probabilities.values()],
|
678 |
textposition='auto',
|
679 |
-
textfont=dict(size=16, family="Poppins", color="white"),
|
680 |
marker=dict(
|
681 |
-
color=
|
682 |
-
line=dict(color='
|
683 |
-
pattern_shape="",
|
684 |
),
|
685 |
-
hovertemplate='<b>%{x}</b><br>Confidence: %{y:.1%}<extra></extra>',
|
686 |
-
width=[0.6, 0.6]
|
687 |
)
|
688 |
])
|
689 |
-
|
690 |
fig.update_layout(
|
691 |
-
title={
|
692 |
-
|
693 |
-
|
694 |
-
'xanchor': 'center',
|
695 |
-
'font': {'size': 24, 'family': 'Poppins', 'color': '#1a202c'}
|
696 |
-
},
|
697 |
-
xaxis=dict(
|
698 |
-
title='Classification',
|
699 |
-
titlefont=dict(size=16, family='Inter', color='#4a5568'),
|
700 |
-
tickfont=dict(size=14, family='Inter', color='#4a5568'),
|
701 |
-
showgrid=False,
|
702 |
-
),
|
703 |
-
yaxis=dict(
|
704 |
-
title='Probability',
|
705 |
-
titlefont=dict(size=16, family='Inter', color='#4a5568'),
|
706 |
-
tickfont=dict(size=14, family='Inter', color='#4a5568'),
|
707 |
-
range=[0, 1],
|
708 |
-
tickformat='.0%',
|
709 |
-
showgrid=True,
|
710 |
-
gridcolor='rgba(0,0,0,0.05)',
|
711 |
-
),
|
712 |
template='plotly_white',
|
713 |
-
|
714 |
-
paper_bgcolor='rgba(0,0,0,0)',
|
715 |
-
font={'family': 'Inter'},
|
716 |
-
margin=dict(l=50, r=50, t=80, b=50),
|
717 |
-
height=400
|
718 |
)
|
719 |
return fig
|
720 |
|
721 |
def plot_attention(text, attention_weights):
|
722 |
-
"""Plot attention weights with
|
723 |
-
tokens = text.split()[:20]
|
724 |
attention_weights = attention_weights[:len(tokens)]
|
725 |
-
|
726 |
if isinstance(attention_weights, (list, np.ndarray)):
|
727 |
attention_weights = np.array(attention_weights).flatten()
|
728 |
-
|
729 |
-
# Normalize attention weights
|
730 |
-
if len(attention_weights) > 0 and max(attention_weights) > 0:
|
731 |
-
normalized_weights = attention_weights / max(attention_weights)
|
732 |
-
else:
|
733 |
-
normalized_weights = attention_weights
|
734 |
-
|
735 |
-
# Create gradient colors
|
736 |
colors = [f'rgba(102, 126, 234, {0.3 + 0.7 * float(w)})' for w in normalized_weights]
|
737 |
-
|
738 |
fig = go.Figure(data=[
|
739 |
go.Bar(
|
740 |
x=tokens,
|
741 |
y=attention_weights,
|
742 |
text=[f'{float(w):.3f}' for w in attention_weights],
|
743 |
textposition='auto',
|
744 |
-
|
745 |
-
marker=dict(
|
746 |
-
color=colors,
|
747 |
-
line=dict(color='rgba(102, 126, 234, 0.8)', width=1),
|
748 |
-
),
|
749 |
-
hovertemplate='<b>%{x}</b><br>Attention: %{y:.3f}<extra></extra>',
|
750 |
)
|
751 |
])
|
752 |
-
|
753 |
fig.update_layout(
|
754 |
-
title={
|
755 |
-
|
756 |
-
|
757 |
-
'xanchor': 'center',
|
758 |
-
'font': {'size': 24, 'family': 'Poppins', 'color': '#1a202c'}
|
759 |
-
},
|
760 |
-
xaxis=dict(
|
761 |
-
title='Words/Tokens',
|
762 |
-
titlefont=dict(size=16, family='Inter', color='#4a5568'),
|
763 |
-
tickfont=dict(size=12, family='Inter', color='#4a5568'),
|
764 |
-
tickangle=45,
|
765 |
-
showgrid=False,
|
766 |
-
),
|
767 |
-
yaxis=dict(
|
768 |
-
title='Attention Score',
|
769 |
-
titlefont=dict(size=16, family='Inter', color='#4a5568'),
|
770 |
-
tickfont=dict(size=14, family='Inter', color='#4a5568'),
|
771 |
-
showgrid=True,
|
772 |
-
gridcolor='rgba(0,0,0,0.05)',
|
773 |
-
),
|
774 |
template='plotly_white',
|
775 |
-
|
776 |
-
paper_bgcolor='rgba(0,0,0,0)',
|
777 |
-
font={'family': 'Inter'},
|
778 |
-
margin=dict(l=50, r=50, t=80, b=100),
|
779 |
-
height=450
|
780 |
)
|
781 |
return fig
|
782 |
|
783 |
def main():
|
784 |
-
# Header
|
785 |
st.markdown("""
|
786 |
-
<div class="header
|
787 |
-
<div class="
|
788 |
-
|
789 |
</div>
|
790 |
</div>
|
791 |
""", unsafe_allow_html=True)
|
792 |
|
793 |
# Hero Section
|
794 |
st.markdown("""
|
795 |
-
<div class="
|
796 |
-
<div class="hero
|
797 |
-
<div class="hero-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
<h2 style="font-size: 1.8rem; font-weight: 600; margin-bottom: 1rem; opacity: 0.9;">Advanced Fake News Detector</h2>
|
802 |
-
<p class="hero-subtitle">
|
803 |
-
🔍 Leverage cutting-edge deep learning technology to instantly analyze and verify news articles.
|
804 |
-
Our hybrid BERT-BiLSTM model delivers precise, trustworthy results with detailed explanations.
|
805 |
-
</p>
|
806 |
-
<div class="hero-stats">
|
807 |
-
<div class="stat-item">
|
808 |
-
<span class="stat-number">95%+</span>
|
809 |
-
<span class="stat-label">Accuracy</span>
|
810 |
-
</div>
|
811 |
-
<div class="stat-item">
|
812 |
-
<span class="stat-number"><3s</span>
|
813 |
-
<span class="stat-label">Analysis Time</span>
|
814 |
-
</div>
|
815 |
-
<div class="stat-item">
|
816 |
-
<span class="stat-number">24/7</span>
|
817 |
-
<span class="stat-label">Available</span>
|
818 |
-
</div>
|
819 |
-
</div>
|
820 |
-
</div>
|
821 |
-
</div>
|
822 |
-
""", unsafe_allow_html=True)
|
823 |
-
|
824 |
-
# Features Section
|
825 |
-
st.markdown("""
|
826 |
-
<div class="features-section">
|
827 |
-
<div class="section-header">
|
828 |
-
<div class="section-badge">
|
829 |
-
🚀 Advanced Features
|
830 |
-
</div>
|
831 |
-
<h2 class="section-title">Why Choose TruthCheck?</h2>
|
832 |
-
<p class="section-description">
|
833 |
-
Our state-of-the-art AI combines multiple advanced technologies to deliver unparalleled accuracy in fake news detection
|
834 |
-
</p>
|
835 |
-
</div>
|
836 |
-
<div class="features-grid">
|
837 |
-
<div class="feature-card">
|
838 |
-
<span class="feature-icon">🤖</span>
|
839 |
-
<h3 class="feature-title">BERT Transformer</h3>
|
840 |
-
<p class="feature-description">
|
841 |
-
Utilizes state-of-the-art BERT transformer architecture for deep contextual understanding and semantic analysis of news content with unprecedented accuracy.
|
842 |
</p>
|
843 |
</div>
|
844 |
-
<div class="
|
845 |
-
<
|
846 |
-
<h3 class="feature-title">BiLSTM Networks</h3>
|
847 |
-
<p class="feature-description">
|
848 |
-
Advanced bidirectional LSTM networks capture sequential patterns, temporal dependencies, and linguistic structures in news articles for comprehensive analysis.
|
849 |
-
</p>
|
850 |
-
</div>
|
851 |
-
<div class="feature-card">
|
852 |
-
<span class="feature-icon">👁️</span>
|
853 |
-
<h3 class="feature-title">Attention Mechanism</h3>
|
854 |
-
<p class="feature-description">
|
855 |
-
Sophisticated attention layers provide transparent insights into model decision-making, highlighting key phrases and suspicious content patterns.
|
856 |
-
</p>
|
857 |
-
</div>
|
858 |
-
<div class="feature-card">
|
859 |
-
<span class="feature-icon">⚡</span>
|
860 |
-
<h3 class="feature-title">Real-time Processing</h3>
|
861 |
-
<p class="feature-description">
|
862 |
-
Lightning-fast analysis delivers results in seconds, enabling immediate verification of news content without compromising accuracy or detail.
|
863 |
-
</p>
|
864 |
-
</div>
|
865 |
-
<div class="feature-card">
|
866 |
-
<span class="feature-icon">📊</span>
|
867 |
-
<h3 class="feature-title">Confidence Scoring</h3>
|
868 |
-
<p class="feature-description">
|
869 |
-
Detailed confidence metrics and probability distributions provide clear insights into prediction reliability and uncertainty levels.
|
870 |
-
</p>
|
871 |
-
</div>
|
872 |
-
<div class="feature-card">
|
873 |
-
<span class="feature-icon">🔒</span>
|
874 |
-
<h3 class="feature-title">Privacy Protected</h3>
|
875 |
-
<p class="feature-description">
|
876 |
-
Your data is processed securely with no storage or tracking. Complete privacy protection ensures your news analysis remains confidential.
|
877 |
-
</p>
|
878 |
</div>
|
879 |
</div>
|
880 |
</div>
|
881 |
""", unsafe_allow_html=True)
|
882 |
|
883 |
-
#
|
884 |
st.markdown("""
|
885 |
-
<div class="
|
886 |
-
<div class="section
|
887 |
-
<
|
888 |
-
|
889 |
-
|
890 |
-
<h2 class="section-title">Analyze News Article</h2>
|
891 |
-
<p class="section-description">
|
892 |
-
📝 Simply paste any news article below and our advanced AI will provide instant, detailed analysis with confidence scores, attention weights, and comprehensive insights.
|
893 |
</p>
|
894 |
</div>
|
895 |
-
|
896 |
""", unsafe_allow_html=True)
|
897 |
|
898 |
# Input Section
|
|
|
899 |
news_text = st.text_area(
|
900 |
-
"",
|
901 |
-
height=
|
902 |
-
placeholder="
|
903 |
-
key="news_input"
|
904 |
-
help="Enter the full text of a news article for analysis. The more complete the article, the more accurate the analysis will be."
|
905 |
)
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
col1, col2, col3 = st.columns([1, 2, 1])
|
911 |
with col2:
|
912 |
-
analyze_button = st.button(
|
913 |
-
|
914 |
-
key="analyze_button",
|
915 |
-
help="Click to start AI-powered analysis of the news article"
|
916 |
-
)
|
917 |
|
918 |
if analyze_button:
|
919 |
if news_text and len(news_text.strip()) > 10:
|
920 |
-
with st.spinner("
|
921 |
try:
|
922 |
result = predict_news(news_text)
|
|
|
923 |
|
924 |
-
#
|
925 |
-
st.
|
926 |
-
|
927 |
-
# Main Prediction Result
|
928 |
-
col1, col2 = st.columns([1, 1], gap="large")
|
929 |
-
|
930 |
with col1:
|
931 |
-
st.markdown("### 🎯 AI Prediction Result")
|
932 |
if result['label'] == 'FAKE':
|
933 |
st.markdown(f'''
|
934 |
<div class="result-card fake-news">
|
935 |
-
<div class="prediction-badge">
|
936 |
-
|
937 |
-
<span class="confidence-score">{result["confidence"]:.1%}</span>
|
938 |
-
</div>
|
939 |
-
<div style="font-size: 1.1rem; color: #c53030; line-height: 1.6;">
|
940 |
-
<strong>⚠️ Warning:</strong> Our AI model has identified this content as likely misinformation based on linguistic patterns, structural analysis, and content inconsistencies.
|
941 |
-
</div>
|
942 |
</div>
|
943 |
''', unsafe_allow_html=True)
|
944 |
else:
|
945 |
st.markdown(f'''
|
946 |
<div class="result-card real-news">
|
947 |
-
<div class="prediction-badge">
|
948 |
-
|
949 |
-
<span class="confidence-score">{result["confidence"]:.1%}</span>
|
950 |
-
</div>
|
951 |
-
<div style="font-size: 1.1rem; color: #2f855a; line-height: 1.6;">
|
952 |
-
<strong>✓ Verified:</strong> This content appears to be legitimate news based on professional writing style, factual consistency, and structural integrity.
|
953 |
-
</div>
|
954 |
</div>
|
955 |
''', unsafe_allow_html=True)
|
956 |
|
957 |
with col2:
|
958 |
-
st.markdown("### 📈 Confidence Breakdown")
|
959 |
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
960 |
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
961 |
st.markdown('</div>', unsafe_allow_html=True)
|
962 |
|
963 |
# Attention Analysis
|
964 |
-
st.markdown("### 🎯 AI Attention Analysis")
|
965 |
-
st.markdown("""
|
966 |
-
<p style="color: #4a5568; text-align: center; margin-bottom: 2rem; font-size: 1.1rem; line-height: 1.6;">
|
967 |
-
🧠 The visualization below reveals which words and phrases our AI model focused on during analysis.
|
968 |
-
<strong>Higher attention scores</strong> (darker colors) indicate words that significantly influenced the prediction.
|
969 |
-
</p>
|
970 |
-
""", unsafe_allow_html=True)
|
971 |
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
972 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
973 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
974 |
-
|
975 |
-
# Detailed Analysis
|
976 |
-
st.markdown("### 🔍 Comprehensive AI Analysis")
|
977 |
-
|
978 |
-
if result['label'] == 'FAKE':
|
979 |
-
st.markdown("""
|
980 |
-
<div class="analysis-grid">
|
981 |
-
<div class="analysis-card">
|
982 |
-
<h4 class="analysis-title">⚠️ Misinformation Indicators</h4>
|
983 |
-
<div class="analysis-content">
|
984 |
-
<ul class="analysis-list">
|
985 |
-
<li><strong>Linguistic Anomalies:</strong> Detected language patterns commonly associated with fabricated content and misinformation campaigns</li>
|
986 |
-
<li><strong>Structural Inconsistencies:</strong> Identified irregular text flow, unusual formatting, or non-standard journalistic structure</li>
|
987 |
-
<li><strong>Content Reliability:</strong> Found potential factual inconsistencies, exaggerated claims, or misleading statements</li>
|
988 |
-
<li><strong>Emotional Manipulation:</strong> High attention on emotionally charged language designed to provoke strong reactions</li>
|
989 |
-
<li><strong>Source Credibility:</strong> Writing style and presentation lack hallmarks of professional journalism</li>
|
990 |
-
</ul>
|
991 |
-
</div>
|
992 |
-
</div>
|
993 |
-
<div class="analysis-card">
|
994 |
-
<h4 class="analysis-title">🛡️ Recommended Actions</h4>
|
995 |
-
<div class="analysis-content">
|
996 |
-
<ul class="analysis-list">
|
997 |
-
<li><strong>Verify Sources:</strong> Cross-reference information with multiple reputable news outlets and official sources</li>
|
998 |
-
<li><strong>Check Facts:</strong> Use fact-checking websites like Snopes, PolitiFact, or FactCheck.org for verification</li>
|
999 |
-
<li><strong>Avoid Sharing:</strong> Do not share this content until authenticity is confirmed through reliable sources</li>
|
1000 |
-
<li><strong>Report Misinformation:</strong> Consider reporting to platform moderators if shared on social media</li>
|
1001 |
-
<li><strong>Stay Informed:</strong> Follow trusted news sources for accurate information on this topic</li>
|
1002 |
-
</ul>
|
1003 |
-
</div>
|
1004 |
-
</div>
|
1005 |
-
</div>
|
1006 |
-
""", unsafe_allow_html=True)
|
1007 |
-
else:
|
1008 |
-
st.markdown("""
|
1009 |
-
<div class="analysis-grid">
|
1010 |
-
<div class="analysis-card">
|
1011 |
-
<h4 class="analysis-title">✅ Authenticity Indicators</h4>
|
1012 |
-
<div class="analysis-content">
|
1013 |
-
<ul class="analysis-list">
|
1014 |
-
<li><strong>Professional Language:</strong> Demonstrates standard journalistic writing style with balanced, objective reporting tone</li>
|
1015 |
-
<li><strong>Structural Integrity:</strong> Follows conventional news article format with proper introduction, body, and conclusion</li>
|
1016 |
-
<li><strong>Factual Consistency:</strong> Information appears coherent, logically structured, and factually consistent throughout</li>
|
1017 |
-
<li><strong>Neutral Presentation:</strong> Maintains objectivity without excessive emotional language or bias indicators</li>
|
1018 |
-
<li><strong>Credible Content:</strong> Contains specific details, proper context, and verifiable information patterns</li>
|
1019 |
-
</ul>
|
1020 |
-
</div>
|
1021 |
-
</div>
|
1022 |
-
<div class="analysis-card">
|
1023 |
-
<h4 class="analysis-title">📋 Best Practices</h4>
|
1024 |
-
<div class="analysis-content">
|
1025 |
-
<ul class="analysis-list">
|
1026 |
-
<li><strong>Continue Verification:</strong> While likely authentic, always cross-reference important news from multiple sources</li>
|
1027 |
-
<li><strong>Check Publication Date:</strong> Ensure the information is current and hasn't been superseded by newer developments</li>
|
1028 |
-
<li><strong>Verify Author Credentials:</strong> Research the author's background and expertise in the subject matter</li>
|
1029 |
-
<li><strong>Review Source Reputation:</strong> Confirm the publication's credibility and editorial standards</li>
|
1030 |
-
<li><strong>Stay Updated:</strong> Monitor for any corrections, updates, or follow-up reporting on the topic</li>
|
1031 |
-
</ul>
|
1032 |
-
</div>
|
1033 |
-
</div>
|
1034 |
-
</div>
|
1035 |
-
""", unsafe_allow_html=True)
|
1036 |
-
|
1037 |
-
# Technical Details
|
1038 |
-
with st.expander("🔧 Technical Analysis Details", expanded=False):
|
1039 |
-
col1, col2, col3 = st.columns(3)
|
1040 |
-
|
1041 |
-
with col1:
|
1042 |
-
st.metric(
|
1043 |
-
label="🎯 Prediction Confidence",
|
1044 |
-
value=f"{result['confidence']:.2%}",
|
1045 |
-
help="Overall confidence in the AI's prediction"
|
1046 |
-
)
|
1047 |
-
|
1048 |
-
with col2:
|
1049 |
-
st.metric(
|
1050 |
-
label="📊 REAL Probability",
|
1051 |
-
value=f"{result['probabilities']['REAL']:.2%}",
|
1052 |
-
help="Probability that the content is authentic news"
|
1053 |
-
)
|
1054 |
-
|
1055 |
-
with col3:
|
1056 |
-
st.metric(
|
1057 |
-
label="⚠️ FAKE Probability",
|
1058 |
-
value=f"{result['probabilities']['FAKE']:.2%}",
|
1059 |
-
help="Probability that the content is fake news"
|
1060 |
-
)
|
1061 |
-
|
1062 |
-
st.markdown("---")
|
1063 |
-
st.markdown("""
|
1064 |
-
**🤖 Model Information:**
|
1065 |
-
- **Architecture:** Hybrid BERT + BiLSTM with Attention Mechanism
|
1066 |
-
- **Training Data:** Extensive dataset of verified real and fake news articles
|
1067 |
-
- **Features:** Contextual embeddings, sequential patterns, attention weights
|
1068 |
-
- **Performance:** 95%+ accuracy on validation datasets
|
1069 |
-
""")
|
1070 |
-
|
1071 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
1072 |
-
|
1073 |
except Exception as e:
|
1074 |
-
st.error(f""
|
1075 |
-
🚨 **Analysis Error Occurred**
|
1076 |
-
|
1077 |
-
We encountered an issue while analyzing your article. This might be due to:
|
1078 |
-
- Technical server issues
|
1079 |
-
- Content formatting problems
|
1080 |
-
- Model loading difficulties
|
1081 |
-
|
1082 |
-
**Error Details:** {str(e)}
|
1083 |
-
|
1084 |
-
Please try again in a few moments or contact support if the issue persists.
|
1085 |
-
""")
|
1086 |
else:
|
1087 |
-
st.markdown(''
|
1088 |
-
|
1089 |
-
|
1090 |
-
<h3 style="margin-bottom: 1rem;">⚠️ Input Required</h3>
|
1091 |
-
<p style="font-size: 1.1rem; line-height: 1.6;">
|
1092 |
-
Please enter a news article (at least 10 words) to perform AI analysis.
|
1093 |
-
<br><strong>💡 Tip:</strong> Longer, complete articles provide more accurate results.
|
1094 |
-
</p>
|
1095 |
-
</div>
|
1096 |
-
</div>
|
1097 |
-
''', unsafe_allow_html=True)
|
1098 |
-
|
1099 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
1100 |
|
1101 |
# Footer
|
1102 |
st.markdown("""
|
1103 |
<div class="footer">
|
1104 |
-
<
|
1105 |
-
<h3 class="footer-title">🛡️ TruthCheck AI</h3>
|
1106 |
-
<p class="footer-text">
|
1107 |
-
🌟 Empowering global communities with cutting-edge AI-driven news verification technology.
|
1108 |
-
Built with advanced deep learning models, natural language processing, and transparent machine learning practices
|
1109 |
-
to combat misinformation and promote media literacy worldwide.
|
1110 |
-
</p>
|
1111 |
-
<div class="footer-links">
|
1112 |
-
<a href="#" class="footer-link">📖 About TruthCheck</a>
|
1113 |
-
<a href="#" class="footer-link">🔬 How It Works</a>
|
1114 |
-
<a href="#" class="footer-link">📊 Accuracy Reports</a>
|
1115 |
-
<a href="#" class="footer-link">🔒 Privacy Policy</a>
|
1116 |
-
<a href="#" class="footer-link">📞 Contact Support</a>
|
1117 |
-
<a href="#" class="footer-link">🆘 Report Issues</a>
|
1118 |
-
</div>
|
1119 |
-
<div class="footer-bottom">
|
1120 |
-
<p style="margin-bottom: 1rem;">
|
1121 |
-
© 2025 TruthCheck AI. Built with ❤️ using Streamlit, BERT, PyTorch, and Advanced Machine Learning.
|
1122 |
-
</p>
|
1123 |
-
<p>
|
1124 |
-
<strong>🔍 Disclaimer:</strong> This tool provides AI-based analysis for informational purposes.
|
1125 |
-
Always verify important information through multiple reliable sources and exercise critical thinking.
|
1126 |
-
Our AI model achieves high accuracy but is not infallible - human judgment remains essential.
|
1127 |
-
</p>
|
1128 |
-
</div>
|
1129 |
-
</div>
|
1130 |
</div>
|
1131 |
""", unsafe_allow_html=True)
|
1132 |
|
|
|
35 |
from src.config.config import *
|
36 |
from src.data.preprocessor import TextPreprocessor
|
37 |
|
38 |
+
# Custom CSS for clean, modern styling
|
39 |
st.markdown("""
|
40 |
<style>
|
41 |
/* Import Google Fonts */
|
42 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
43 |
+
|
44 |
/* Global Styles */
|
45 |
* {
|
46 |
margin: 0;
|
47 |
padding: 0;
|
48 |
box-sizing: border-box;
|
49 |
}
|
50 |
+
|
|
|
|
|
|
|
|
|
|
|
51 |
.stApp {
|
52 |
+
font-family: 'Inter', sans-serif;
|
53 |
+
background: #f8fafc;
|
54 |
min-height: 100vh;
|
55 |
color: #2d3748;
|
56 |
}
|
57 |
+
|
58 |
/* Hide Streamlit elements */
|
59 |
#MainMenu {visibility: hidden;}
|
60 |
footer {visibility: hidden;}
|
61 |
.stDeployButton {display: none;}
|
62 |
header {visibility: hidden;}
|
63 |
.stApp > header {visibility: hidden;}
|
64 |
+
|
65 |
+
/* Container */
|
66 |
+
.container {
|
67 |
+
max-width: 1200px;
|
68 |
+
margin: 0 auto;
|
69 |
+
padding: 2rem;
|
70 |
+
}
|
71 |
+
|
72 |
+
/* Header */
|
73 |
+
.header {
|
74 |
+
background: #ffffff;
|
75 |
+
padding: 1.5rem 2rem;
|
76 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
77 |
position: sticky;
|
78 |
top: 0;
|
79 |
z-index: 1000;
|
|
|
80 |
}
|
81 |
+
|
82 |
+
.header-title {
|
|
|
83 |
font-size: 1.8rem;
|
84 |
+
font-weight: 700;
|
85 |
+
color: #1a202c;
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
}
|
87 |
+
|
88 |
/* Hero Section */
|
89 |
+
.hero {
|
90 |
+
display: flex;
|
91 |
+
gap: 2rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
margin-bottom: 3rem;
|
|
|
|
|
|
|
|
|
|
|
93 |
}
|
94 |
+
|
95 |
+
.hero-left {
|
96 |
+
flex: 1;
|
97 |
+
padding: 2rem;
|
98 |
+
}
|
99 |
+
|
100 |
+
.hero-right {
|
101 |
+
flex: 1;
|
102 |
display: flex;
|
103 |
+
align-items: center;
|
104 |
justify-content: center;
|
|
|
|
|
105 |
}
|
106 |
+
|
107 |
+
.hero-right img {
|
108 |
+
max-width: 100%;
|
109 |
+
height: auto;
|
110 |
+
border-radius: 12px;
|
111 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
112 |
}
|
113 |
+
|
114 |
+
.hero-title {
|
115 |
font-size: 2.5rem;
|
116 |
font-weight: 700;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
color: #1a202c;
|
118 |
margin-bottom: 1rem;
|
|
|
119 |
}
|
120 |
+
|
121 |
+
.hero-text {
|
122 |
+
font-size: 1.1rem;
|
123 |
color: #4a5568;
|
|
|
|
|
124 |
line-height: 1.6;
|
125 |
}
|
126 |
+
|
127 |
+
/* About Section */
|
128 |
+
.about-section {
|
129 |
+
margin-bottom: 3rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
}
|
132 |
+
|
133 |
+
.about-title {
|
134 |
+
font-size: 2rem;
|
|
|
135 |
font-weight: 600;
|
136 |
color: #1a202c;
|
137 |
margin-bottom: 1rem;
|
138 |
}
|
139 |
+
|
140 |
+
.about-text {
|
141 |
+
font-size: 1rem;
|
142 |
color: #4a5568;
|
143 |
line-height: 1.6;
|
144 |
+
max-width: 800px;
|
145 |
+
margin: 0 auto;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
}
|
147 |
+
|
148 |
+
/* Input Section */
|
149 |
.input-container {
|
150 |
max-width: 800px;
|
151 |
margin: 0 auto;
|
152 |
}
|
153 |
+
|
154 |
.stTextArea > div > div > textarea {
|
155 |
+
border-radius: 12px !important;
|
156 |
+
border: 1px solid #e2e8f0 !important;
|
157 |
+
padding: 1rem !important;
|
158 |
+
font-size: 1rem !important;
|
159 |
font-family: 'Inter', sans-serif !important;
|
160 |
+
background: #ffffff !important;
|
161 |
+
min-height: 150px !important;
|
|
|
|
|
162 |
}
|
163 |
+
|
164 |
.stTextArea > div > div > textarea:focus {
|
165 |
border-color: #667eea !important;
|
166 |
+
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
|
|
|
167 |
outline: none !important;
|
168 |
}
|
169 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
.stButton > button {
|
171 |
+
background: #667eea !important;
|
172 |
color: white !important;
|
173 |
+
border-radius: 8px !important;
|
174 |
+
padding: 0.75rem 2rem !important;
|
175 |
+
font-size: 1rem !important;
|
176 |
+
font-weight: 500 !important;
|
177 |
+
font-family: 'Inter', sans-serif !important;
|
178 |
+
transition: all 0.3s ease !important;
|
|
|
|
|
179 |
width: 100% !important;
|
|
|
|
|
180 |
}
|
181 |
+
|
182 |
.stButton > button:hover {
|
183 |
+
background: #5a6fd8 !important;
|
184 |
+
transform: translateY(-2px) !important;
|
|
|
|
|
|
|
|
|
|
|
185 |
}
|
186 |
+
|
187 |
/* Results Section */
|
188 |
.results-container {
|
189 |
+
margin-top: 2rem;
|
190 |
+
padding: 1.5rem;
|
191 |
+
background: #ffffff;
|
192 |
+
border-radius: 12px;
|
193 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05);
|
194 |
}
|
195 |
+
|
196 |
.result-card {
|
197 |
+
padding: 1.5rem;
|
198 |
+
border-radius: 12px;
|
199 |
+
border-left: 4px solid transparent;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
}
|
201 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
.fake-news {
|
203 |
+
background: #fef2f2;
|
204 |
+
border-left-color: #ef4444;
|
|
|
205 |
}
|
206 |
+
|
207 |
.real-news {
|
208 |
+
background: #f0fff4;
|
|
|
209 |
border-left-color: #38a169;
|
210 |
}
|
211 |
+
|
212 |
+
.prediction-badge {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
font-weight: 600;
|
214 |
+
font-size: 1rem;
|
215 |
margin-bottom: 1rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
}
|
217 |
+
|
218 |
+
.confidence-score {
|
219 |
+
font-weight: 600;
|
220 |
+
margin-left: auto;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
}
|
222 |
+
|
223 |
/* Chart Containers */
|
224 |
.chart-container {
|
225 |
+
padding: 1.5rem;
|
226 |
+
border-radius: 12px;
|
227 |
+
background: #ffffff;
|
228 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05);
|
229 |
margin: 1rem 0;
|
|
|
|
|
230 |
}
|
231 |
+
|
232 |
/* Footer */
|
233 |
.footer {
|
234 |
+
margin-top: 3rem;
|
235 |
+
padding: 1rem;
|
|
|
236 |
text-align: center;
|
237 |
+
border-top: 1px solid #e2e8f0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
}
|
239 |
</style>
|
240 |
""", unsafe_allow_html=True)
|
|
|
296 |
}
|
297 |
|
298 |
def plot_confidence(probabilities):
|
299 |
+
"""Plot prediction confidence with simplified styling."""
|
|
|
|
|
300 |
fig = go.Figure(data=[
|
301 |
go.Bar(
|
302 |
x=list(probabilities.keys()),
|
303 |
y=list(probabilities.values()),
|
304 |
text=[f'{p:.1%}' for p in probabilities.values()],
|
305 |
textposition='auto',
|
|
|
306 |
marker=dict(
|
307 |
+
color=['#38a169', '#ef4444'],
|
308 |
+
line=dict(color='#ffffff', width=1),
|
|
|
309 |
),
|
|
|
|
|
310 |
)
|
311 |
])
|
|
|
312 |
fig.update_layout(
|
313 |
+
title={'text': 'Prediction Confidence', 'x': 0.5, 'xanchor': 'center'},
|
314 |
+
xaxis=dict(title='Classification'),
|
315 |
+
yaxis=dict(title='Probability', range=[0, 1], tickformat='.0%'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
template='plotly_white',
|
317 |
+
height=300
|
|
|
|
|
|
|
|
|
318 |
)
|
319 |
return fig
|
320 |
|
321 |
def plot_attention(text, attention_weights):
|
322 |
+
"""Plot attention weights with simplified styling."""
|
323 |
+
tokens = text.split()[:20]
|
324 |
attention_weights = attention_weights[:len(tokens)]
|
|
|
325 |
if isinstance(attention_weights, (list, np.ndarray)):
|
326 |
attention_weights = np.array(attention_weights).flatten()
|
327 |
+
normalized_weights = attention_weights / max(attention_weights) if max(attention_weights) > 0 else attention_weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
colors = [f'rgba(102, 126, 234, {0.3 + 0.7 * float(w)})' for w in normalized_weights]
|
|
|
329 |
fig = go.Figure(data=[
|
330 |
go.Bar(
|
331 |
x=tokens,
|
332 |
y=attention_weights,
|
333 |
text=[f'{float(w):.3f}' for w in attention_weights],
|
334 |
textposition='auto',
|
335 |
+
marker=dict(color=colors),
|
|
|
|
|
|
|
|
|
|
|
336 |
)
|
337 |
])
|
|
|
338 |
fig.update_layout(
|
339 |
+
title={'text': 'Attention Weights', 'x': 0.5, 'xanchor': 'center'},
|
340 |
+
xaxis=dict(title='Words', tickangle=45),
|
341 |
+
yaxis=dict(title='Attention Score'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
template='plotly_white',
|
343 |
+
height=400
|
|
|
|
|
|
|
|
|
344 |
)
|
345 |
return fig
|
346 |
|
347 |
def main():
|
348 |
+
# Header
|
349 |
st.markdown("""
|
350 |
+
<div class="header">
|
351 |
+
<div class="container">
|
352 |
+
<h1 class="header-title">TruthCheck</h1>
|
353 |
</div>
|
354 |
</div>
|
355 |
""", unsafe_allow_html=True)
|
356 |
|
357 |
# Hero Section
|
358 |
st.markdown("""
|
359 |
+
<div class="container">
|
360 |
+
<div class="hero">
|
361 |
+
<div class="hero-left">
|
362 |
+
<h2 class="hero-title">Advanced Fake News Detection</h2>
|
363 |
+
<p class="hero-text">
|
364 |
+
Use our AI-powered tool to verify news articles instantly. Powered by BERT and BiLSTM, TruthCheck provides accurate, transparent analysis of news authenticity.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
</p>
|
366 |
</div>
|
367 |
+
<div class="hero-right">
|
368 |
+
<img src="/hero.png" alt="TruthCheck Illustration">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
</div>
|
370 |
</div>
|
371 |
</div>
|
372 |
""", unsafe_allow_html=True)
|
373 |
|
374 |
+
# About Section
|
375 |
st.markdown("""
|
376 |
+
<div class="container">
|
377 |
+
<div class="about-section">
|
378 |
+
<h2 class="about-title">About TruthCheck</h2>
|
379 |
+
<p class="about-text">
|
380 |
+
TruthCheck leverages a hybrid BERT-BiLSTM model to detect fake news with high accuracy. Simply paste a news article, and our AI will analyze its authenticity, providing confidence scores and attention insights.
|
|
|
|
|
|
|
381 |
</p>
|
382 |
</div>
|
383 |
+
</div>
|
384 |
""", unsafe_allow_html=True)
|
385 |
|
386 |
# Input Section
|
387 |
+
st.markdown('<div class="container"><div class="input-container">', unsafe_allow_html=True)
|
388 |
news_text = st.text_area(
|
389 |
+
"Paste News Article",
|
390 |
+
height=150,
|
391 |
+
placeholder="Paste your news article here for AI analysis...",
|
392 |
+
key="news_input"
|
|
|
393 |
)
|
394 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
395 |
+
|
396 |
+
# Analyze Button
|
397 |
+
st.markdown('<div class="container">', unsafe_allow_html=True)
|
398 |
col1, col2, col3 = st.columns([1, 2, 1])
|
399 |
with col2:
|
400 |
+
analyze_button = st.button("Analyze Article", key="analyze_button")
|
401 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
402 |
|
403 |
if analyze_button:
|
404 |
if news_text and len(news_text.strip()) > 10:
|
405 |
+
with st.spinner("Analyzing article..."):
|
406 |
try:
|
407 |
result = predict_news(news_text)
|
408 |
+
st.markdown('<div class="container"><div class="results-container">', unsafe_allow_html=True)
|
409 |
|
410 |
+
# Prediction Result
|
411 |
+
col1, col2 = st.columns([1, 1])
|
|
|
|
|
|
|
|
|
412 |
with col1:
|
|
|
413 |
if result['label'] == 'FAKE':
|
414 |
st.markdown(f'''
|
415 |
<div class="result-card fake-news">
|
416 |
+
<div class="prediction-badge">FAKE NEWS DETECTED <span class="confidence-score">{result["confidence"]:.1%}</span></div>
|
417 |
+
<p>Our AI model has identified this content as likely misinformation based on linguistic patterns and content analysis.</p>
|
|
|
|
|
|
|
|
|
|
|
418 |
</div>
|
419 |
''', unsafe_allow_html=True)
|
420 |
else:
|
421 |
st.markdown(f'''
|
422 |
<div class="result-card real-news">
|
423 |
+
<div class="prediction-badge">AUTHENTIC NEWS <span class="confidence-score">{result["confidence"]:.1%}</span></div>
|
424 |
+
<p>This content appears to be legitimate news based on professional writing style and factual consistency.</p>
|
|
|
|
|
|
|
|
|
|
|
425 |
</div>
|
426 |
''', unsafe_allow_html=True)
|
427 |
|
428 |
with col2:
|
|
|
429 |
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
430 |
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
431 |
st.markdown('</div>', unsafe_allow_html=True)
|
432 |
|
433 |
# Attention Analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
435 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
436 |
+
st.markdown('</div></div></div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
except Exception as e:
|
438 |
+
st.error(f"Error: {str(e)}. Please try again or contact support.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
else:
|
440 |
+
st.markdown('<div class="container">', unsafe_allow_html=True)
|
441 |
+
st.error("Please enter a news article (at least 10 words) for analysis.")
|
442 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
# Footer
|
445 |
st.markdown("""
|
446 |
<div class="footer">
|
447 |
+
<p style="text-align: center; font-weight: 600; font-size: 16px;">💻 Developed with ❤️ using Streamlit | © 2024</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
</div>
|
449 |
""", unsafe_allow_html=True)
|
450 |
|