Spaces:
Sleeping
Sleeping
File size: 971 Bytes
0105482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import whisper
import gradio as gr
import subprocess
# Load the Whisper model
model = whisper.load_model("large") # Use "large" or "large-v2" for best results
def transcribe_video(video_path):
# Extract audio from the uploaded video
audio_path = "audio.wav"
subprocess.run(["ffmpeg", "-i", video_path, "-ar", "16000", "-ac", "1", "-c:a", "pcm_s16le", audio_path])
# Transcribe the audio in Urdu
result = model.transcribe(audio_path, task="transcribe", language="ur")
# Return the transcribed text
return result["text"]
# Create the Gradio interface
interface = gr.Interface(
fn=transcribe_video,
inputs=gr.Video(label="Upload your Urdu-speaking video"),
outputs=gr.Textbox(label="Transcribed Text"),
title="Urdu Video Transcription App",
description="Upload a video file in Urdu, and this app will transcribe the speech into text using Whisper.",
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|