adnaniqbal001 commited on
Commit
4655d57
·
verified ·
1 Parent(s): d0feb8a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -31
app.py CHANGED
@@ -1,26 +1,13 @@
1
- import whisper
2
  import gradio as gr
3
  import subprocess
4
- from autocorrect import Speller
5
- from transformers import pipeline
6
 
7
  # Load the Whisper model
8
- model = whisper.load_model("large")
9
-
10
- # Initialize autocorrect for Urdu
11
- spell = Speller(lang='ur') # Urdu spelling correction
12
-
13
- # Load the transformer model for text correction
14
- corrector = pipeline("text-generation", model="dbmdz/bert-large-uncased-finetuned-urdu")
15
-
16
- def correct_urdu_text(text):
17
- try:
18
- # Use the transformer model to correct the Urdu text
19
- corrected_text = corrector(text, max_length=512, num_return_sequences=1)[0]['generated_text']
20
- return corrected_text
21
- except Exception as e:
22
- print(f"Error in text correction: {e}")
23
- return text
24
 
25
  def transcribe_video(video_path):
26
  try:
@@ -33,15 +20,7 @@ def transcribe_video(video_path):
33
 
34
  # Transcribe the audio in Urdu
35
  result = model.transcribe(audio_path, task="transcribe", language="ur")
36
- transcribed_text = result["text"]
37
-
38
- # Correct the transcribed text using autocorrect
39
- corrected_text = spell(transcribed_text)
40
-
41
- # Apply further correction using transformer-based model
42
- final_corrected_text = correct_urdu_text(corrected_text)
43
-
44
- return final_corrected_text
45
 
46
  except FileNotFoundError:
47
  return "Error: ffmpeg is not installed or not found in the environment."
@@ -52,9 +31,9 @@ def transcribe_video(video_path):
52
  interface = gr.Interface(
53
  fn=transcribe_video,
54
  inputs=gr.Video(label="Upload your Urdu-speaking video"),
55
- outputs=gr.Textbox(label="Corrected Transcribed Text"),
56
- title="Urdu Video Transcription with Correction",
57
- description="Upload a video file in Urdu, and this app will transcribe the speech, correct spelling and grammar using Whisper and Transformers.",
58
  )
59
 
60
  # Launch the app
 
1
+ import whisper # Ensure 'openai-whisper' is installed
2
  import gradio as gr
3
  import subprocess
 
 
4
 
5
  # Load the Whisper model
6
+ try:
7
+ model = whisper.load_model("large") # Official Whisper model
8
+ except Exception as e:
9
+ print(f"Error loading Whisper model: {e}")
10
+ raise e
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  def transcribe_video(video_path):
13
  try:
 
20
 
21
  # Transcribe the audio in Urdu
22
  result = model.transcribe(audio_path, task="transcribe", language="ur")
23
+ return result["text"]
 
 
 
 
 
 
 
 
24
 
25
  except FileNotFoundError:
26
  return "Error: ffmpeg is not installed or not found in the environment."
 
31
  interface = gr.Interface(
32
  fn=transcribe_video,
33
  inputs=gr.Video(label="Upload your Urdu-speaking video"),
34
+ outputs=gr.Textbox(label="Transcribed Text"),
35
+ title="Urdu Video Transcription App",
36
+ description="Upload a video file in Urdu, and this app will transcribe the speech into text using Whisper.",
37
  )
38
 
39
  # Launch the app