adnaniqbal001 commited on
Commit
235d036
·
verified ·
1 Parent(s): c3e2995

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -2,7 +2,6 @@ import numpy as np
2
  import pandas as pd
3
  import configparser
4
  import streamlit as st
5
- import streamlit
6
  import chromadb
7
  import langchain
8
  from langchain.embeddings.openai import OpenAIEmbeddings
@@ -15,8 +14,8 @@ import shutil
15
  import os
16
  import openai
17
 
18
- # You need your own API key
19
- api_key = st.secrets["OPENAI_API_KEY"] # Get API key from Streamlit secrets
20
 
21
  if not api_key:
22
  st.error("I can not find API key")
@@ -32,17 +31,17 @@ else:
32
  shutil.copyfileobj(uploaded_file, tmpfile)
33
  file_path = tmpfile.name
34
 
35
- # PyPDFLoader
36
  loader = PyPDFLoader(file_path)
37
  pages = loader.load_and_split()
38
 
39
- # Model and vectorstore
 
40
  embeddings = OpenAIEmbeddings()
41
  vectorstore = Chroma.from_documents(pages, embedding=embeddings, persist_directory=".")
42
  vectorstore.persist()
43
- llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
44
 
45
- # Q&A chain
46
  pdf_qa = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
47
 
48
  # Get question from user
@@ -53,4 +52,5 @@ else:
53
  st.write("Answer:", answer)
54
 
55
  # Delete tempfile
56
- os.remove(file_path) # Clean up the temporary file
 
 
2
  import pandas as pd
3
  import configparser
4
  import streamlit as st
 
5
  import chromadb
6
  import langchain
7
  from langchain.embeddings.openai import OpenAIEmbeddings
 
14
  import os
15
  import openai
16
 
17
+ # Replace with your OpenAI API key
18
+ api_key = "your_openai_api_key_here"
19
 
20
  if not api_key:
21
  st.error("I can not find API key")
 
31
  shutil.copyfileobj(uploaded_file, tmpfile)
32
  file_path = tmpfile.name
33
 
34
+ # Load and split PDF using PyPDFLoader
35
  loader = PyPDFLoader(file_path)
36
  pages = loader.load_and_split()
37
 
38
+ # Initialize model and vectorstore
39
+ llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
40
  embeddings = OpenAIEmbeddings()
41
  vectorstore = Chroma.from_documents(pages, embedding=embeddings, persist_directory=".")
42
  vectorstore.persist()
 
43
 
44
+ # Create Q&A chain
45
  pdf_qa = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
46
 
47
  # Get question from user
 
52
  st.write("Answer:", answer)
53
 
54
  # Delete tempfile
55
+ if file_path:
56
+ os.unlink(file_path)