adnaniqbal001 commited on
Commit
c38543b
·
verified ·
1 Parent(s): 7a35f5a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # app.py
3
+ import streamlit as st
4
+ import torch
5
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, MarianMTModel, MarianTokenizer
6
+ import soundfile as sf
7
+ import tempfile
8
+
9
+ # Load models and tokenizers
10
+ @st.cache_resource
11
+ def load_models():
12
+ # Load ASR model (Wav2Vec2 for Urdu)
13
+ asr_processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-ur")
14
+ asr_model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-ur")
15
+
16
+ # Load translation model (Urdu to German)
17
+ translation_tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ur-de")
18
+ translation_model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-ur-de")
19
+
20
+ return asr_processor, asr_model, translation_tokenizer, translation_model
21
+
22
+ asr_processor, asr_model, translation_tokenizer, translation_model = load_models()
23
+
24
+ # Streamlit App UI
25
+ st.title("Real-Time Urdu to German Voice Translator")
26
+ st.markdown("Upload an Urdu audio file, and the app will translate it to German.")
27
+
28
+ uploaded_file = st.file_uploader("Upload an audio file (in .wav format)", type=["wav"])
29
+
30
+ if uploaded_file is not None:
31
+ with tempfile.NamedTemporaryFile(delete=False) as temp_file:
32
+ temp_file.write(uploaded_file.read())
33
+ temp_file_path = temp_file.name
34
+
35
+ # Load audio file
36
+ audio_input, sample_rate = sf.read(temp_file_path)
37
+
38
+ # Ensure proper sampling rate
39
+ if sample_rate != 16000:
40
+ st.error("Please upload a .wav file with a sampling rate of 16kHz.")
41
+ else:
42
+ st.info("Processing the audio...")
43
+
44
+ # Convert speech to text (ASR)
45
+ input_values = asr_processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
46
+ with torch.no_grad():
47
+ logits = asr_model(input_values).logits
48
+ predicted_ids = torch.argmax(logits, dim=-1)
49
+ transcription = asr_processor.batch_decode(predicted_ids)[0]
50
+
51
+ st.text(f"Transcribed Urdu Text: {transcription}")
52
+
53
+ # Translate Urdu text to German
54
+ translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True))
55
+ german_translation = translation_tokenizer.decode(translated[0], skip_special_tokens=True)
56
+
57
+ st.success(f"Translated German Text: {german_translation}")