manaviel85370 commited on
Commit
56abaa1
Β·
1 Parent(s): 5f8d317

refactor infos

Browse files
app.py CHANGED
@@ -5,7 +5,6 @@ st.set_page_config(
5
  page_title="Hello",
6
  page_icon="πŸ‘‹",
7
  )
8
- st.info(f"Speicherauslastung vor imports: {psutil.virtual_memory().percent}%. Keys in Cache: {[k for k in st.session_state]}")
9
 
10
  st.write("# Willkommen zum Event-Daten-Extraktions-Tool! πŸ‘‹")
11
  st.write("""
 
5
  page_title="Hello",
6
  page_icon="πŸ‘‹",
7
  )
 
8
 
9
  st.write("# Willkommen zum Event-Daten-Extraktions-Tool! πŸ‘‹")
10
  st.write("""
pages/5_Playground.py CHANGED
@@ -1,13 +1,6 @@
1
-
2
  import logging
3
- import os
4
- import sys
5
- import gc
6
- import psutil
7
  import streamlit as st
8
  import pandas as pd
9
- st.info(f"Speicherauslastung vor imports: {psutil.virtual_memory().percent}%. Keys in Cache: {[k for k in st.session_state]}")
10
-
11
 
12
  from src.configuration.config import SessionStateConfig
13
  from src.nlp.playground.textsummarization import SumySummarizer
@@ -76,9 +69,6 @@ def clear_st_cache():
76
  db = init_connection()
77
  data = init_data()
78
 
79
- st.info(f"Speicherauslastung: {psutil.virtual_memory().percent}%. Keys in Cache: {[k for k in st.session_state]}")
80
-
81
-
82
  with st.expander("Large Language Models"):
83
  with st.form("Settings LLM"):
84
  count = st.number_input("Wie viele Veranstaltungen sollen gestest werden?", step=1)
@@ -165,7 +155,6 @@ with st.expander("Titel Extraktion"):
165
  if submit_title_extr:
166
  init_session_state("title_extractor", TitleExtractor())
167
  title_extractor = st.session_state.title_extractor
168
- st.info(f"Speicherauslastung: {psutil.virtual_memory().percent}%. Keys in Cache: {[k for k in st.session_state]}")
169
 
170
  for event in data:
171
  text = normalize_data(event["data"])
@@ -191,7 +180,6 @@ with st.expander("Textsummarization"):
191
  if submit_textsummarization:
192
  init_session_state(SessionStateConfig.SUMY_SUMMARIZER, SumySummarizer())
193
  sumy_summarizer = st.session_state[SessionStateConfig.SUMY_SUMMARIZER]
194
- st.info(f"Speicherauslastung: {psutil.virtual_memory().percent}%. Keys in Cache: {[k for k in st.session_state]}")
195
  for event in data:
196
  try:
197
  md = normalize_data(event["data"])
 
 
1
  import logging
 
 
 
 
2
  import streamlit as st
3
  import pandas as pd
 
 
4
 
5
  from src.configuration.config import SessionStateConfig
6
  from src.nlp.playground.textsummarization import SumySummarizer
 
69
  db = init_connection()
70
  data = init_data()
71
 
 
 
 
72
  with st.expander("Large Language Models"):
73
  with st.form("Settings LLM"):
74
  count = st.number_input("Wie viele Veranstaltungen sollen gestest werden?", step=1)
 
155
  if submit_title_extr:
156
  init_session_state("title_extractor", TitleExtractor())
157
  title_extractor = st.session_state.title_extractor
 
158
 
159
  for event in data:
160
  text = normalize_data(event["data"])
 
180
  if submit_textsummarization:
181
  init_session_state(SessionStateConfig.SUMY_SUMMARIZER, SumySummarizer())
182
  sumy_summarizer = st.session_state[SessionStateConfig.SUMY_SUMMARIZER]
 
183
  for event in data:
184
  try:
185
  md = normalize_data(event["data"])
src/nlp/playground/llm.py CHANGED
@@ -15,7 +15,6 @@ class QwenLlmHandler:
15
  token=os.getenv("INFERENCE_API_TOKEN"),
16
  )
17
  st.info("Using LLM Qwen/Qwen2.5-Coder-32B-Instruct via inference API")
18
- st.info(f"Speicherauslastung: {psutil.virtual_memory().percent}%. Keys in Cache: {[k for k in st.session_state]}")
19
 
20
 
21
 
 
15
  token=os.getenv("INFERENCE_API_TOKEN"),
16
  )
17
  st.info("Using LLM Qwen/Qwen2.5-Coder-32B-Instruct via inference API")
 
18
 
19
 
20
 
src/nlp/playground/ner.py CHANGED
@@ -9,8 +9,7 @@ LABELS = ["eventTitle", "eventLocation", "date", "time", "street", "city"]
9
  class GlinerHandler:
10
  def __init__(self, model_name="urchade/gliner_multi-v2.1"):
11
  self.model = GLiNER.from_pretrained(model_name)
12
- st.info("Loaded Model Gliner")
13
- st.info(f"Speicherauslastung vor imports: {psutil.virtual_memory().percent}%. Keys in Cache: {[k for k in st.session_state]}")
14
 
15
  def extract_entities(self, text, labels=None, threshold=0.3):
16
  if labels is None:
 
9
  class GlinerHandler:
10
  def __init__(self, model_name="urchade/gliner_multi-v2.1"):
11
  self.model = GLiNER.from_pretrained(model_name)
12
+ st.info("Using NER Model Gliner")
 
13
 
14
  def extract_entities(self, text, labels=None, threshold=0.3):
15
  if labels is None:
src/nlp/playground/pipelines/description_extractor.py CHANGED
@@ -17,7 +17,6 @@ class DescriptionExtractor:
17
  if SessionStateConfig.SUMY_SUMMARIZER not in st.session_state:
18
  st.session_state[SessionStateConfig.SUMY_SUMMARIZER] = SumySummarizer()
19
  sumy_summary = st.session_state[SessionStateConfig.SUMY_SUMMARIZER].summarize(text)
20
- st.info("Loaded Sumy Summarizer Model")
21
  st.info(f"{psutil.virtual_memory()}")
22
  description = []
23
  for element in md_analyzer:
 
17
  if SessionStateConfig.SUMY_SUMMARIZER not in st.session_state:
18
  st.session_state[SessionStateConfig.SUMY_SUMMARIZER] = SumySummarizer()
19
  sumy_summary = st.session_state[SessionStateConfig.SUMY_SUMMARIZER].summarize(text)
 
20
  st.info(f"{psutil.virtual_memory()}")
21
  description = []
22
  for element in md_analyzer:
src/nlp/playground/textclassification.py CHANGED
@@ -138,9 +138,7 @@ class ZeroShotClassifier:
138
  self.classifier = pipeline(
139
  task="zero-shot-classification",
140
  model="Sahajtomar/German_Zeroshot")
141
- st.info("Loaded Model Sahajtomar/German_Zeroshot")
142
- st.info(
143
- f"Speicherauslastung vor imports: {psutil.virtual_memory().percent}%. Keys in Cache: {[k for k in st.session_state]}")
144
 
145
  def classify(self, text, mode: ClassifierMode):
146
  predictions = self.classifier(text, mode.labels, hypothesis_template=mode.hypothesis_template)
 
138
  self.classifier = pipeline(
139
  task="zero-shot-classification",
140
  model="Sahajtomar/German_Zeroshot")
141
+ st.info("Using ZeroShotClassification with Model Sahajtomar/German_Zeroshot")
 
 
142
 
143
  def classify(self, text, mode: ClassifierMode):
144
  predictions = self.classifier(text, mode.labels, hypothesis_template=mode.hypothesis_template)
src/nlp/playground/textsummarization.py CHANGED
@@ -26,9 +26,7 @@ class SumySummarizer:
26
  stemmer = Stemmer(self.LANGUAGE)
27
 
28
  summarizer = Summarizer(stemmer)
29
- st.info("Loaded Model Sumy Summarizer")
30
- st.info(
31
- f"Speicherauslastung vor imports: {psutil.virtual_memory().percent}%. Keys in Cache: {[k for k in st.session_state]}")
32
  summarizer.stop_words = get_stop_words(self.LANGUAGE)
33
 
34
  summary = summarizer(parser.document, self.SENTENCES_COUNT)
 
26
  stemmer = Stemmer(self.LANGUAGE)
27
 
28
  summarizer = Summarizer(stemmer)
29
+ st.info("Using Textsummarization Model Sumy Summarizer")
 
 
30
  summarizer.stop_words = get_stop_words(self.LANGUAGE)
31
 
32
  summary = summarizer(parser.document, self.SENTENCES_COUNT)