TeachingAssistant / processors /input_processor.py
adriiita's picture
Update processors/input_processor.py
6135bb3 verified
raw
history blame
2.68 kB
from langchain_community.document_loaders import (
PyPDFLoader,
UnstructuredWordDocumentLoader,
YoutubeLoader
)
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers.audio import OpenAIWhisperParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from youtube_transcript_api import YouTubeTranscriptApi
import re
class ContentProcessor:
def __init__(self):
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
def process_pdf(self, file_path):
loader = PyPDFLoader(file_path)
pages = loader.load_and_split(self.text_splitter)
return pages
def process_docx(self, file_path):
loader = UnstructuredWordDocumentLoader(file_path)
pages = loader.load_and_split(self.text_splitter)
return pages
def process_youtube(self, video_url):
video_id = self._extract_video_id(video_url)
if not video_id:
raise ValueError("This appears to be an invalid YouTube URL. Please check the URL and try again.")
try:
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
full_transcript = " ".join([entry['text'] for entry in transcript_list])
# Create a document-like structure
from langchain.schema import Document
doc = Document(
page_content=full_transcript,
metadata={"source": video_url}
)
return self.text_splitter.split_documents([doc])
except TranscriptsDisabled:
raise Exception("This video does not have subtitles/captions enabled. Please try a different video that has captions available.")
except Exception as e:
raise Exception(f"Unable to get transcript: {str(e)}. Please ensure the video has captions enabled.")
def _extract_video_id(self, url):
# Handle different YouTube URL formats
patterns = [
r'(?:youtube\.com\/watch\?v=|youtu.be\/|youtube.com\/embed\/)([^&\n?]*)',
r'(?:youtube\.com\/shorts\/)([^&\n?]*)'
]
for pattern in patterns:
match = re.search(pattern, url)
if match:
return match.group(1)
return None
def process_audio(self, audio_file):
loader = GenericLoader(
audio_file,
parser=OpenAIWhisperParser()
)
transcript = loader.load()
return self.text_splitter.split_documents(transcript)