aehrm commited on
Commit
a3620e9
·
1 Parent(s): a04d171

first commit

Browse files
Files changed (2) hide show
  1. app.py +126 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from nltk.tokenize.treebank import TreebankWordDetokenizer
3
+ from somajo import SoMaJo
4
+
5
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
6
+ from datasets import Dataset
7
+ from transformers.pipelines.pt_utils import KeyDataset
8
+ from hybrid_textnorm.lexicon import Lexicon
9
+ from hybrid_textnorm.normalization import predict_type_normalization, reranked_normalization, prior_normalization
10
+ from hybrid_textnorm.preprocess import recombine_tokens, german_transliterate
11
+
12
+ text_tokenizer = SoMaJo("de_CMC", split_camel_case=True)
13
+ lexicon_dataset_name = 'aehrm/dtaec-lexicon'
14
+ train_lexicon = Lexicon.from_dataset(lexicon_dataset_name, split='train')
15
+
16
+ def predict(input_str, model_name, progress=gr.Progress()):
17
+ tokenized_sentences = list(text_tokenizer.tokenize_text([input_str]))
18
+
19
+ if model_name == 'type normalizer':
20
+ output_sentences = predict_only_type_transformer(tokenized_sentences, progress)
21
+ elif model_name == 'type normalizer + lm':
22
+ output_sentences = predict_type_transformer_with_lm(tokenized_sentences, progress)
23
+ elif model_name == 'transnormer':
24
+ output_sentences = predict_transnormer(tokenized_sentences, progress)
25
+
26
+ if type(output_sentences[0]) == list:
27
+ detok = TreebankWordDetokenizer()
28
+ return "<br>".join([detok.detokenize(recombine_tokens(sent)) for sent in output_sentences])
29
+ else:
30
+ return "<br>".join(output_sentences)
31
+
32
+ def predict_transnormer(tokenized_sentences, progress):
33
+ model_name = 'ybracke/transnormer-19c-beta-v02'
34
+
35
+ progress(0, desc='running normalization')
36
+ pipe = pipeline(model='ybracke/transnormer-19c-beta-v02')
37
+
38
+ raw_sentences = []
39
+ for tokenized_sent in tokenized_sentences:
40
+ raw_sentences.append(''.join(tok.text + (' ' if tok.space_after else '') for tok in tokenized_sent))
41
+
42
+ progress(0, desc='running normalization')
43
+ ds = KeyDataset(Dataset.from_dict(dict(types=list(raw_sentences))), "types")
44
+
45
+ output_sentences = []
46
+ for out_sentence in progress.tqdm(pipe(ds, num_beams=4, max_length=1000)):
47
+ output_sentences.append(out_sentence[0]['generated_text'])
48
+
49
+ return output_sentences
50
+
51
+
52
+
53
+ def predict_only_type_transformer(tokenized_sentences, progress):
54
+ type_model_name = 'aehrm/dtaec-type-normalizer'
55
+ progress(0, desc='loading model')
56
+
57
+ pipe = pipeline('text2text-generation', type_model_name)
58
+
59
+ transliterated_sentences = []
60
+ for sentence in tokenized_sentences:
61
+ transliterated_sentences.append([german_transliterate(tok.text) for tok in sentence])
62
+
63
+ oov_types = set(tok for sent in transliterated_sentences for tok in sent) - train_lexicon.keys()
64
+ oov_normalizations = {}
65
+
66
+ progress(0, desc='running normalization')
67
+ ds = KeyDataset(Dataset.from_dict(dict(types=list(oov_types))), "types")
68
+ for in_type, out in zip(ds, progress.tqdm(pipe(ds))):
69
+ oov_normalizations[in_type] = out[0]['generated_text']
70
+
71
+ output_sentences = []
72
+ for sent in transliterated_sentences:
73
+ output_sent = []
74
+ for t in sent:
75
+ if t in train_lexicon.keys():
76
+ output_sent.append(train_lexicon[t].most_common(1)[0][0])
77
+ elif t in oov_normalizations.keys():
78
+ output_sent.append(oov_normalizations[t])
79
+ else:
80
+ raise ValueError()
81
+
82
+ output_sentences.append(output_sent)
83
+
84
+ return output_sentences
85
+
86
+ def predict_type_transformer_with_lm(tokenized_sentences, progress):
87
+ type_model_name = 'aehrm/dtaec-type-normalizer'
88
+ language_model_name = 'dbmdz/german-gpt2'
89
+
90
+ progress(0, desc='loading model')
91
+ type_model_tokenizer = AutoTokenizer.from_pretrained(type_model_name)
92
+ type_model = AutoModelForSeq2SeqLM.from_pretrained(type_model_name)
93
+ language_model_tokenizer = AutoTokenizer.from_pretrained(language_model_name)
94
+ language_model = AutoModelForCausalLM.from_pretrained(language_model_name)
95
+ if 'pad_token' not in language_model_tokenizer.special_tokens_map:
96
+ language_model_tokenizer.add_special_tokens({'pad_token': '<pad>'})
97
+
98
+ transliterated_sentences = []
99
+ for sentence in tokenized_sentences:
100
+ transliterated_sentences.append([german_transliterate(tok.text) for tok in sentence])
101
+
102
+ oov_types = set(tok for sent in transliterated_sentences for tok in sent) - train_lexicon.keys()
103
+ oov_replacement_probabilities = {}
104
+
105
+ progress(0, desc='running normalization')
106
+ for input_type, probas in progress.tqdm(predict_type_normalization(oov_types, type_model_tokenizer, type_model, batch_size=8), total=len(oov_types)):
107
+ oov_replacement_probabilities[input_type] = probas
108
+
109
+ output_sentences = []
110
+ for hist_sent in progress.tqdm(transliterated_sentences):
111
+ predictions = reranked_normalization(hist_sent, train_lexicon, oov_replacement_probabilities, language_model_tokenizer, language_model, batch_size=1)
112
+ best_pred, _, _, _ = predictions[0]
113
+ output_sentences.append(best_pred)
114
+
115
+ return output_sentences
116
+
117
+
118
+ gradio_app = gr.Interface(
119
+ predict,
120
+ inputs=[gr.Textbox(value="Die Königinn ſaß auf des Pallaſtes mittlerer Tribune."), gr.Dropdown([('aehrm/dtaec-type-normalizer (FAST)', 'type normalizer'), ('aehrm/dtaec-type-normalizer + dbmdz/german-gpt2 (Fast)', 'type normalizer + lm'), ('ybracke/transnormer-19c-beta-v02 (fast)', 'transnormer')])],
121
+ outputs=gr.HTML(),
122
+ title="German Historical Text Normalization",
123
+ )
124
+
125
+ if __name__ == "__main__":
126
+ gradio_app.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ nltk
2
+ somajo
3
+ hybrid-textnorm @ git+https://github.com/aehrm/hybrid_textnorm@8619fd8961caac5d5f961df0e689f6a9ad3948cd