File size: 114,952 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
#include "common.h"
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h"

#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iterator>
#include <iostream>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <cinttypes>
#include <codecvt>

#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <locale>
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <thread>
#include <future>
#endif

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
#define GGML_USE_CUDA_SYCL
#endif

#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
#define GGML_USE_CUDA_SYCL_VULKAN
#endif

#if defined(LLAMA_USE_CURL)
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
#define PATH_MAX MAX_PATH
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
#endif // LLAMA_USE_CURL

using json = nlohmann::ordered_json;

int32_t get_num_physical_cores() {
#ifdef __linux__
    // enumerate the set of thread siblings, num entries is num cores
    std::unordered_set<std::string> siblings;
    for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
        std::ifstream thread_siblings("/sys/devices/system/cpu"
            + std::to_string(cpu) + "/topology/thread_siblings");
        if (!thread_siblings.is_open()) {
            break; // no more cpus
        }
        std::string line;
        if (std::getline(thread_siblings, line)) {
            siblings.insert(line);
        }
    }
    if (!siblings.empty()) {
        return static_cast<int32_t>(siblings.size());
    }
#elif defined(__APPLE__) && defined(__MACH__)
    int32_t num_physical_cores;
    size_t len = sizeof(num_physical_cores);
    int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
    result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
#elif defined(_WIN32)
    //TODO: Implement
#endif
    unsigned int n_threads = std::thread::hardware_concurrency();
    return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}

#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#include <pthread.h>

static void cpuid(unsigned leaf, unsigned subleaf,
                  unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
    __asm__("movq\t%%rbx,%%rsi\n\t"
            "cpuid\n\t"
            "xchgq\t%%rbx,%%rsi"
            : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
            : "0"(leaf), "2"(subleaf));
}

static int pin_cpu(int cpu) {
    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(cpu, &mask);
    return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
}

static bool is_hybrid_cpu(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(7, 0, &eax, &ebx, &ecx, &edx);
    return !!(edx & (1u << 15));
}

static bool is_running_on_efficiency_core(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
    int intel_atom = 0x20;
    int core_type = (eax & 0xff000000u) >> 24;
    return core_type == intel_atom;
}

static int count_math_cpus(int cpu_count) {
    int result = 0;
    for (int cpu = 0; cpu < cpu_count; ++cpu) {
        if (pin_cpu(cpu)) {
            return -1;
        }
        if (is_running_on_efficiency_core()) {
            continue; // efficiency cores harm lockstep threading
        }
        ++cpu; // hyperthreading isn't useful for linear algebra
        ++result;
    }
    return result;
}

#endif // __x86_64__ && __linux__

/**
 * Returns number of CPUs on system that are useful for math.
 */
int get_math_cpu_count() {
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
    int cpu_count = sysconf(_SC_NPROCESSORS_ONLN);
    if (cpu_count < 1) {
        return get_num_physical_cores();
    }
    if (is_hybrid_cpu()) {
        cpu_set_t affinity;
        if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
            int result = count_math_cpus(cpu_count);
            pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
            if (result > 0) {
                return result;
            }
        }
    }
#endif
    return get_num_physical_cores();
}

void process_escapes(std::string & input) {
    std::size_t input_len = input.length();
    std::size_t output_idx = 0;

    for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
        if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
            switch (input[++input_idx]) {
                case 'n':  input[output_idx++] = '\n'; break;
                case 'r':  input[output_idx++] = '\r'; break;
                case 't':  input[output_idx++] = '\t'; break;
                case '\'': input[output_idx++] = '\''; break;
                case '\"': input[output_idx++] = '\"'; break;
                case '\\': input[output_idx++] = '\\'; break;
                case 'x':
                    // Handle \x12, etc
                    if (input_idx + 2 < input_len) {
                        const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
                        char *err_p = nullptr;
                        const long val = std::strtol(x, &err_p, 16);
                        if (err_p == x + 2) {
                            input_idx += 2;
                            input[output_idx++] = char(val);
                            break;
                        }
                    }
                    // fall through
                default:   input[output_idx++] = '\\';
                           input[output_idx++] = input[input_idx]; break;
            }
        } else {
            input[output_idx++] = input[input_idx];
        }
    }

    input.resize(output_idx);
}

bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
    bool result = true;
    try {
        if (!gpt_params_parse_ex(argc, argv, params)) {
            gpt_print_usage(argc, argv, gpt_params());
            exit(0);
        }
    }
    catch (const std::invalid_argument & ex) {
        fprintf(stderr, "%s\n", ex.what());
        gpt_print_usage(argc, argv, gpt_params());
        exit(1);
    }
    return result;
}

bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
    const char * sep = strchr(data, '=');
    if (sep == nullptr || sep - data >= 128) {
        fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
        return false;
    }
    llama_model_kv_override kvo;
    std::strncpy(kvo.key, data, sep - data);
    kvo.key[sep - data] = 0;
    sep++;
    if (strncmp(sep, "int:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
        kvo.val_i64 = std::atol(sep);
    } else if (strncmp(sep, "float:", 6) == 0) {
        sep += 6;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
        kvo.val_f64 = std::atof(sep);
    } else if (strncmp(sep, "bool:", 5) == 0) {
        sep += 5;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
        if (std::strcmp(sep, "true") == 0) {
            kvo.val_bool = true;
        } else if (std::strcmp(sep, "false") == 0) {
            kvo.val_bool = false;
        } else {
            fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
            return false;
        }
    } else if (strncmp(sep, "str:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
        if (strlen(sep) > 127) {
            fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
            return false;
        }
        strncpy(kvo.val_str, sep, 127);
        kvo.val_str[127] = '\0';
    } else {
        fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
        return false;
    }
    overrides.emplace_back(std::move(kvo));
    return true;
}

bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
    llama_sampling_params & sparams = params.sparams;

    if (arg == "-s" || arg == "--seed") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        // This is temporary, in the future the samplign state will be moved fully to llama_sampling_context.
        params.seed = std::stoul(argv[i]);
        sparams.seed = std::stoul(argv[i]);
        return true;
    }
    if (arg == "-t" || arg == "--threads") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_threads = std::stoi(argv[i]);
        if (params.n_threads <= 0) {
            params.n_threads = std::thread::hardware_concurrency();
        }
        return true;
    }
    if (arg == "-tb" || arg == "--threads-batch") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_threads_batch = std::stoi(argv[i]);
        if (params.n_threads_batch <= 0) {
            params.n_threads_batch = std::thread::hardware_concurrency();
        }
        return true;
    }
    if (arg == "-td" || arg == "--threads-draft") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_threads_draft = std::stoi(argv[i]);
        if (params.n_threads_draft <= 0) {
            params.n_threads_draft = std::thread::hardware_concurrency();
        }
        return true;
    }
    if (arg == "-tbd" || arg == "--threads-batch-draft") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_threads_batch_draft = std::stoi(argv[i]);
        if (params.n_threads_batch_draft <= 0) {
            params.n_threads_batch_draft = std::thread::hardware_concurrency();
        }
        return true;
    }
    if (arg == "-p" || arg == "--prompt") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.prompt = argv[i];
        return true;
    }
    if (arg == "-e" || arg == "--escape") {
        params.escape = true;
        return true;
    }
    if (arg == "--prompt-cache") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.path_prompt_cache = argv[i];
        return true;
    }
    if (arg == "--prompt-cache-all") {
        params.prompt_cache_all = true;
        return true;
    }
    if (arg == "--prompt-cache-ro") {
        params.prompt_cache_ro = true;
        return true;
    }
    if (arg == "-bf" || arg == "--binary-file") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::ifstream file(argv[i], std::ios::binary);
        if (!file) {
            fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
            invalid_param = true;
            return true;
        }
        // store the external file name in params
        params.prompt_file = argv[i];
        std::ostringstream ss;
        ss << file.rdbuf();
        params.prompt = ss.str();
        fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
        return true;
    }
    if (arg == "-f" || arg == "--file") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::ifstream file(argv[i]);
        if (!file) {
            fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
            invalid_param = true;
            return true;
        }
        // store the external file name in params
        params.prompt_file = argv[i];
        std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
        if (!params.prompt.empty() && params.prompt.back() == '\n') {
            params.prompt.pop_back();
        }
        return true;
    }
    if (arg == "-n" || arg == "--n-predict") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_predict = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--top-k") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.top_k = std::stoi(argv[i]);
        return true;
    }
    if (arg == "-c" || arg == "--ctx-size") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_ctx = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--grp-attn-n" || arg == "-gan") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.grp_attn_n = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--grp-attn-w" || arg == "-gaw") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.grp_attn_w = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--rope-freq-base") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.rope_freq_base = std::stof(argv[i]);
        return true;
    }
    if (arg == "--rope-freq-scale") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.rope_freq_scale = std::stof(argv[i]);
        return true;
    }
    if (arg == "--rope-scaling") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::string value(argv[i]);
        /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
        else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
        else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
        else { invalid_param = true; }
        return true;
    }
    if (arg == "--rope-scale") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.rope_freq_scale = 1.0f / std::stof(argv[i]);
        return true;
    }
    if (arg == "--yarn-orig-ctx") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.yarn_orig_ctx = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--yarn-ext-factor") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.yarn_ext_factor = std::stof(argv[i]);
        return true;
    }
    if (arg == "--yarn-attn-factor") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.yarn_attn_factor = std::stof(argv[i]);
        return true;
    }
    if (arg == "--yarn-beta-fast") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.yarn_beta_fast = std::stof(argv[i]);
        return true;
    }
    if (arg == "--yarn-beta-slow") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.yarn_beta_slow = std::stof(argv[i]);
        return true;
    }
    if (arg == "--pooling") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::string value(argv[i]);
        /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
        else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
        else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
        else { invalid_param = true; }
        return true;
    }
    if (arg == "--defrag-thold" || arg == "-dt") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.defrag_thold = std::stof(argv[i]);
        return true;
    }
    if (arg == "--samplers") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        const auto sampler_names = string_split(argv[i], ';');
        sparams.samplers_sequence = sampler_types_from_names(sampler_names, true);
        return true;
    }
    if (arg == "--sampling-seq") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
        return true;
    }
    if (arg == "--top-p") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.top_p = std::stof(argv[i]);
        return true;
    }
    if (arg == "--min-p") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.min_p = std::stof(argv[i]);
        return true;
    }
    if (arg == "--temp") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.temp = std::stof(argv[i]);
        sparams.temp = std::max(sparams.temp, 0.0f);
        return true;
    }
    if (arg == "--tfs") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.tfs_z = std::stof(argv[i]);
        return true;
    }
    if (arg == "--typical") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.typical_p = std::stof(argv[i]);
        return true;
    }
    if (arg == "--repeat-last-n") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.penalty_last_n = std::stoi(argv[i]);
        sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
        return true;
    }
    if (arg == "--repeat-penalty") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.penalty_repeat = std::stof(argv[i]);
        return true;
    }
    if (arg == "--frequency-penalty") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.penalty_freq = std::stof(argv[i]);
        return true;
    }
    if (arg == "--presence-penalty") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.penalty_present = std::stof(argv[i]);
        return true;
    }
    if (arg == "--dynatemp-range") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.dynatemp_range = std::stof(argv[i]);
        return true;
    }
    if (arg == "--dynatemp-exp") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.dynatemp_exponent = std::stof(argv[i]);
        return true;
    }
    if (arg == "--mirostat") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.mirostat = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--mirostat-lr") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.mirostat_eta = std::stof(argv[i]);
        return true;
    }
    if (arg == "--mirostat-ent") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.mirostat_tau = std::stof(argv[i]);
        return true;
    }
    if (arg == "--cfg-negative-prompt") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.cfg_negative_prompt = argv[i];
        return true;
    }
    if (arg == "--cfg-negative-prompt-file") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::ifstream file(argv[i]);
        if (!file) {
            fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
            invalid_param = true;
            return true;
        }
        std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
        if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
            sparams.cfg_negative_prompt.pop_back();
        }
        return true;
    }
    if (arg == "--cfg-scale") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.cfg_scale = std::stof(argv[i]);
        return true;
    }
    if (arg == "-b" || arg == "--batch-size") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_batch = std::stoi(argv[i]);
        return true;
    }
    if (arg == "-ub" || arg == "--ubatch-size") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_ubatch = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--keep") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_keep = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--draft") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_draft = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--chunks") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_chunks = std::stoi(argv[i]);
        return true;
    }
    if (arg == "-np" || arg == "--parallel") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_parallel = std::stoi(argv[i]);
        return true;
    }
    if (arg == "-ns" || arg == "--sequences") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_sequences = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--p-split" || arg == "-ps") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.p_split = std::stof(argv[i]);
        return true;
    }
    if (arg == "-m" || arg == "--model") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.model = argv[i];
        return true;
    }
    if (arg == "-md" || arg == "--model-draft") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.model_draft = argv[i];
        return true;
    }
    if (arg == "-a" || arg == "--alias") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.model_alias = argv[i];
        return true;
    }
    if (arg == "-mu" || arg == "--model-url") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.model_url = argv[i];
        return true;
    }
    if (arg == "-hfr" || arg == "--hf-repo") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.hf_repo = argv[i];
        return true;
    }
    if (arg == "-hff" || arg == "--hf-file") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.hf_file = argv[i];
        return true;
    }
    if (arg == "--lora") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.lora_adapter.emplace_back(argv[i], 1.0f);
        params.use_mmap = false;
        return true;
    }
    if (arg == "--lora-scaled") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        const char* lora_adapter = argv[i];
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
        params.use_mmap = false;
        return true;
    }
    if (arg == "--lora-base") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.lora_base = argv[i];
        return true;
    }
    if (arg == "--control-vector") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.control_vectors.push_back({ 1.0f, argv[i], });
        return true;
    }
    if (arg == "--control-vector-scaled") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        const char* fname = argv[i];
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.control_vectors.push_back({ std::stof(argv[i]), fname, });
        return true;
    }
    if (arg == "--control-vector-layer-range") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.control_vector_layer_start = std::stoi(argv[i]);
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.control_vector_layer_end = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--mmproj") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.mmproj = argv[i];
        return true;
    }
    if (arg == "--image") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.image.emplace_back(argv[i]);
        return true;
    }
    if (arg == "-i" || arg == "--interactive") {
        params.interactive = true;
        return true;
    }
    if (arg == "--embedding") {
        params.embedding = true;
        return true;
    }
    if (arg == "--interactive-first") {
        params.interactive_first = true;
        return true;
    }
    if (arg == "-ins" || arg == "--instruct") {
        params.instruct = true;
        return true;
    }
    if (arg == "-cml" || arg == "--chatml") {
        params.chatml = true;
        return true;
    }
    if (arg == "--infill") {
        params.infill = true;
        return true;
    }
    if (arg == "-dkvc" || arg == "--dump-kv-cache") {
        params.dump_kv_cache = true;
        return true;
    }
    if (arg == "-nkvo" || arg == "--no-kv-offload") {
        params.no_kv_offload = true;
        return true;
    }
    if (arg == "-ctk" || arg == "--cache-type-k") {
        params.cache_type_k = argv[++i];
        return true;
    }
    if (arg == "-ctv" || arg == "--cache-type-v") {
        params.cache_type_v = argv[++i];
        return true;
    }
    if (arg == "--multiline-input") {
        params.multiline_input = true;
        return true;
    }
    if (arg == "--simple-io") {
        params.simple_io = true;
        return true;
    }
    if (arg == "-cb" || arg == "--cont-batching") {
        params.cont_batching = true;
        return true;
    }
    if (arg == "-fa" || arg == "--flash-attn") {
        params.flash_attn = true;
        return true;
    }
    if (arg == "--color") {
        params.use_color = true;
        return true;
    }
    if (arg == "--mlock") {
        params.use_mlock = true;
        return true;
    }
    if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_gpu_layers = std::stoi(argv[i]);
        if (!llama_supports_gpu_offload()) {
            fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
            fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
        }
        return true;
    }
    if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_gpu_layers_draft = std::stoi(argv[i]);
        if (!llama_supports_gpu_offload()) {
            fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
            fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
        }
        return true;
    }
    if (arg == "--main-gpu" || arg == "-mg") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.main_gpu = std::stoi(argv[i]);
#ifndef GGML_USE_CUDA_SYCL
        fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the main GPU has no effect.\n");
#endif // GGML_USE_CUDA_SYCL
        return true;
    }
    if (arg == "--split-mode" || arg == "-sm") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::string arg_next = argv[i];
        if (arg_next == "none") {
            params.split_mode = LLAMA_SPLIT_MODE_NONE;
        }
        else if (arg_next == "layer") {
            params.split_mode = LLAMA_SPLIT_MODE_LAYER;
        }
        else if (arg_next == "row") {
#ifdef GGML_USE_SYCL
            fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
            exit(1);
#endif // GGML_USE_SYCL
            params.split_mode = LLAMA_SPLIT_MODE_ROW;
        }
        else {
            invalid_param = true;
            return true;
        }
#ifndef GGML_USE_CUDA_SYCL
        fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUDA_SYCL
        return true;
    }
    if (arg == "--tensor-split" || arg == "-ts") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::string arg_next = argv[i];

        // split string by , and /
        const std::regex regex{ R"([,/]+)" };
        std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
        std::vector<std::string> split_arg{ it, {} };
        if (split_arg.size() >= llama_max_devices()) {
            invalid_param = true;
            return true;
        }
        for (size_t i = 0; i < llama_max_devices(); ++i) {
            if (i < split_arg.size()) {
                params.tensor_split[i] = std::stof(split_arg[i]);
            }
            else {
                params.tensor_split[i] = 0.0f;
            }
        }
#ifndef GGML_USE_CUDA_SYCL_VULKAN
        fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUDA_SYCL_VULKAN
        return true;
    }
    if (arg == "--no-mmap") {
        params.use_mmap = false;
        return true;
    }
    if (arg == "--numa") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::string value(argv[i]);
        /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
        else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
        else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
        else { invalid_param = true; }
        return true;
    }
    if (arg == "--verbose-prompt") {
        params.verbose_prompt = true;
        return true;
    }
    if (arg == "--no-display-prompt") {
        params.display_prompt = false;
        return true;
    }
    if (arg == "-r" || arg == "--reverse-prompt") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.antiprompt.emplace_back(argv[i]);
        return true;
    }
    if (arg == "-ld" || arg == "--logdir") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.logdir = argv[i];

        if (params.logdir.back() != DIRECTORY_SEPARATOR) {
            params.logdir += DIRECTORY_SEPARATOR;
        }
        return true;
    }
    if (arg == "-lcs" || arg == "--lookup-cache-static") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.lookup_cache_static = argv[i];
        return true;
    }
    if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.lookup_cache_dynamic = argv[i];
        return true;
    }
    if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.logits_file = argv[i];
        return true;
    }
    if (arg == "--perplexity" || arg == "--all-logits") {
        params.logits_all = true;
        return true;
    }
    if (arg == "--ppl-stride") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.ppl_stride = std::stoi(argv[i]);
        return true;
    }
    if (arg == "-ptc" || arg == "--print-token-count") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.n_print = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--check-tensors") {
        params.check_tensors = true;
        return true;
    }
    if (arg == "--ppl-output-type") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.ppl_output_type = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--hellaswag") {
        params.hellaswag = true;
        return true;
    }
    if (arg == "--hellaswag-tasks") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.hellaswag_tasks = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--winogrande") {
        params.winogrande = true;
        return true;
    }
    if (arg == "--winogrande-tasks") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.winogrande_tasks = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--multiple-choice") {
        params.multiple_choice = true;
        return true;
    }
    if (arg == "--multiple-choice-tasks") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.multiple_choice_tasks = std::stoi(argv[i]);
        return true;
    }
    if (arg == "--kl-divergence") {
        params.kl_divergence = true;
        return true;
    }
    if (arg == "--ignore-eos") {
        params.ignore_eos = true;
        return true;
    }
    if (arg == "--penalize-nl") {
        sparams.penalize_nl = true;
        return true;
    }
    if (arg == "-l" || arg == "--logit-bias") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::stringstream ss(argv[i]);
        llama_token key;
        char sign;
        std::string value_str;
        try {
            if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
                sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
            }
            else {
                throw std::exception();
            }
        }
        catch (const std::exception&) {
            invalid_param = true;
            return true;
        }
        return true;
    }
    if (arg == "-h" || arg == "--help") {
        gpt_print_usage(argc, argv, gpt_params());
        exit(0);
    }
    if (arg == "--version") {
        fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
        fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
        exit(0);
    }
    if (arg == "--random-prompt") {
        params.random_prompt = true;
        return true;
    }
    if (arg == "--in-prefix-bos") {
        params.input_prefix_bos = true;
        return true;
    }
    if (arg == "--in-prefix") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.input_prefix = argv[i];
        return true;
    }
    if (arg == "--in-suffix") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        params.input_suffix = argv[i];
        return true;
    }
    if (arg == "--grammar") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.grammar = argv[i];
        return true;
    }
    if (arg == "--grammar-file") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        std::ifstream file(argv[i]);
        if (!file) {
            fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
            invalid_param = true;
            return true;
        }
        std::copy(
            std::istreambuf_iterator<char>(file),
            std::istreambuf_iterator<char>(),
            std::back_inserter(sparams.grammar)
        );
        return true;
    }
    if (arg == "-j" || arg == "--json-schema") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        sparams.grammar = json_schema_to_grammar(json::parse(argv[i]));
        return true;
    }
    if (arg == "--override-kv") {
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        if (!parse_kv_override(argv[i], params.kv_overrides)) {
            fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
            invalid_param = true;
            return true;
        }
        return true;
    }
#ifndef LOG_DISABLE_LOGS
    // Parse args for logging parameters
    if (log_param_single_parse(argv[i])) {
        // Do nothing, log_param_single_parse automatically does it's thing
        //  and returns if a match was found and parsed.
        return true;
    }
    if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
        // We have a matching known parameter requiring an argument,
        //  now we need to check if there is anything after this argv
        //  and flag invalid_param or parse it.
        if (++i >= argc) {
            invalid_param = true;
            return true;
        }
        if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
            invalid_param = true;
            return true;
        }
        return true;
    }
    // End of Parse args for logging parameters
#endif // LOG_DISABLE_LOGS

    return false;
}

void gpt_params_handle_model_default(gpt_params & params) {
    if (!params.hf_repo.empty()) {
        // short-hand to avoid specifying --hf-file -> default it to --model
        if (params.hf_file.empty()) {
            if (params.model.empty()) {
                throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
            }
            params.hf_file = params.model;
        } else if (params.model.empty()) {
            params.model = "models/" + string_split(params.hf_file, '/').back();
        }
    } else if (!params.model_url.empty()) {
        if (params.model.empty()) {
            auto f = string_split(params.model_url, '#').front();
            f = string_split(f, '?').front();
            f = string_split(f, '/').back();
            params.model =  "models/" + f;
        }
    } else if (params.model.empty()) {
        params.model = DEFAULT_MODEL_PATH;
    }
}

bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
    bool invalid_param = false;
    std::string arg;
    const std::string arg_prefix = "--";
    llama_sampling_params & sparams = params.sparams;

    for (int i = 1; i < argc; i++) {
        arg = argv[i];
        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
            std::replace(arg.begin(), arg.end(), '_', '-');
        }

        if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
            throw std::invalid_argument("error: unknown argument: " + arg);
        }
    }

    if (invalid_param) {
        throw std::invalid_argument("error: invalid parameter for argument: " + arg);
    }

    if (params.prompt_cache_all &&
            (params.interactive || params.interactive_first ||
             params.instruct)) {

        throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
    }

    gpt_params_handle_model_default(params);

    if (params.escape) {
        process_escapes(params.prompt);
        process_escapes(params.input_prefix);
        process_escapes(params.input_suffix);
        process_escapes(sparams.cfg_negative_prompt);
        for (auto & antiprompt : params.antiprompt) {
            process_escapes(antiprompt);
        }
    }

    if (!params.kv_overrides.empty()) {
        params.kv_overrides.emplace_back();
        params.kv_overrides.back().key[0] = 0;
    }

    return true;
}

void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
    const llama_sampling_params & sparams = params.sparams;

    std::string sampler_type_chars;
    std::string sampler_type_names;
    for (const auto sampler_type : sparams.samplers_sequence) {
        sampler_type_chars += static_cast<char>(sampler_type);
        sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
    }
    sampler_type_names.pop_back();

    printf("\n");
    printf("usage: %s [options]\n", argv[0]);
    printf("\n");
    printf("options:\n");
    printf("  -h, --help            show this help message and exit\n");
    printf("  --version             show version and build info\n");
    printf("  -i, --interactive     run in interactive mode\n");
    printf("  --interactive-first   run in interactive mode and wait for input right away\n");
    printf("  -ins, --instruct      run in instruction mode (use with Alpaca models)\n");
    printf("  -cml, --chatml        run in chatml mode (use with ChatML-compatible models)\n");
    printf("  --multiline-input     allows you to write or paste multiple lines without ending each in '\\'\n");
    printf("  -r PROMPT, --reverse-prompt PROMPT\n");
    printf("                        halt generation at PROMPT, return control in interactive mode\n");
    printf("                        (can be specified more than once for multiple prompts).\n");
    printf("  --color               colorise output to distinguish prompt and user input from generations\n");
    printf("  -s SEED, --seed SEED  RNG seed (default: -1, use random seed for < 0)\n");
    printf("  -t N, --threads N     number of threads to use during generation (default: %d)\n", params.n_threads);
    printf("  -tb N, --threads-batch N\n");
    printf("                        number of threads to use during batch and prompt processing (default: same as --threads)\n");
    printf("  -td N, --threads-draft N");
    printf("                        number of threads to use during generation (default: same as --threads)\n");
    printf("  -tbd N, --threads-batch-draft N\n");
    printf("                        number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
    printf("  -p PROMPT, --prompt PROMPT\n");
    printf("                        prompt to start generation with (default: empty)\n");
    printf("  -e, --escape          process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
    printf("  --prompt-cache FNAME  file to cache prompt state for faster startup (default: none)\n");
    printf("  --prompt-cache-all    if specified, saves user input and generations to cache as well.\n");
    printf("                        not supported with --interactive or other interactive options\n");
    printf("  --prompt-cache-ro     if specified, uses the prompt cache but does not update it.\n");
    printf("  --random-prompt       start with a randomized prompt.\n");
    printf("  --in-prefix-bos       prefix BOS to user inputs, preceding the `--in-prefix` string\n");
    printf("  --in-prefix STRING    string to prefix user inputs with (default: empty)\n");
    printf("  --in-suffix STRING    string to suffix after user inputs with (default: empty)\n");
    printf("  -f FNAME, --file FNAME\n");
    printf("                        prompt file to start generation.\n");
    printf("  -bf FNAME, --binary-file FNAME\n");
    printf("                        binary file containing multiple choice tasks.\n");
    printf("  -n N, --n-predict N   number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
    printf("  -c N, --ctx-size N    size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
    printf("  -b N, --batch-size N  logical maximum batch size (default: %d)\n", params.n_batch);
    printf("  -ub N, --ubatch-size N\n");
    printf("                        physical maximum batch size (default: %d)\n", params.n_ubatch);
    printf("  --samplers            samplers that will be used for generation in the order, separated by \';\'\n");
    printf("                        (default: %s)\n", sampler_type_names.c_str());
    printf("  --sampling-seq        simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
    printf("  --top-k N             top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
    printf("  --top-p N             top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
    printf("  --min-p N             min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
    printf("  --tfs N               tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
    printf("  --typical N           locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
    printf("  --repeat-last-n N     last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
    printf("  --repeat-penalty N    penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
    printf("  --presence-penalty N  repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
    printf("  --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
    printf("  --dynatemp-range N    dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range);
    printf("  --dynatemp-exp N      dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent);
    printf("  --mirostat N          use Mirostat sampling.\n");
    printf("                        Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
    printf("                        (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
    printf("  --mirostat-lr N       Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
    printf("  --mirostat-ent N      Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
    printf("  -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
    printf("                        modifies the likelihood of token appearing in the completion,\n");
    printf("                        i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
    printf("                        or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
    printf("  --grammar GRAMMAR     BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
    printf("  --grammar-file FNAME  file to read grammar from\n");
    printf("  -j SCHEMA, --json-schema SCHEMA\n");
    printf("                        JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object.\n");
    printf("                        For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead\n");
    printf("  --cfg-negative-prompt PROMPT\n");
    printf("                        negative prompt to use for guidance. (default: empty)\n");
    printf("  --cfg-negative-prompt-file FNAME\n");
    printf("                        negative prompt file to use for guidance. (default: empty)\n");
    printf("  --cfg-scale N         strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
    printf("  --rope-scaling {none,linear,yarn}\n");
    printf("                        RoPE frequency scaling method, defaults to linear unless specified by the model\n");
    printf("  --rope-scale N        RoPE context scaling factor, expands context by a factor of N\n");
    printf("  --rope-freq-base N    RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
    printf("  --rope-freq-scale N   RoPE frequency scaling factor, expands context by a factor of 1/N\n");
    printf("  --yarn-orig-ctx N     YaRN: original context size of model (default: 0 = model training context size)\n");
    printf("  --yarn-ext-factor N   YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
    printf("  --yarn-attn-factor N  YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
    printf("  --yarn-beta-slow N    YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
    printf("  --yarn-beta-fast N    YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
    printf("  --pooling {none,mean,cls}\n");
    printf("                        pooling type for embeddings, use model default if unspecified\n");
    printf("  -dt N, --defrag-thold N\n");
    printf("                        KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
    printf("  --ignore-eos          ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
    printf("  --penalize-nl         penalize newline tokens\n");
    printf("  --temp N              temperature (default: %.1f)\n", (double)sparams.temp);
    printf("  --all-logits          return logits for all tokens in the batch (default: disabled)\n");
    printf("  --hellaswag           compute HellaSwag score over random tasks from datafile supplied with -f\n");
    printf("  --hellaswag-tasks N   number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
    printf("  --winogrande          compute Winogrande score over random tasks from datafile supplied with -f\n");
    printf("  --winogrande-tasks N  number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
    printf("  --multiple-choice     compute multiple choice score over random tasks from datafile supplied with -f\n");
    printf("  --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
    printf("  --kl-divergence       computes KL-divergence to logits provided via --kl-divergence-base\n");
    printf("  --keep N              number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
    printf("  --draft N             number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
    printf("  --chunks N            max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
    printf("  -np N, --parallel N   number of parallel sequences to decode (default: %d)\n", params.n_parallel);
    printf("  -ns N, --sequences N  number of sequences to decode (default: %d)\n", params.n_sequences);
    printf("  -ps N, --p-split N    speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
    printf("  -cb, --cont-batching  enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
    printf("  -fa, --flash-attn     enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled");
    printf("  --mmproj MMPROJ_FILE  path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
    printf("  --image IMAGE_FILE    path to an image file. use with multimodal models. Specify multiple times for batching\n");
    if (llama_supports_mlock()) {
        printf("  --mlock               force system to keep model in RAM rather than swapping or compressing\n");
    }
    if (llama_supports_mmap()) {
        printf("  --no-mmap             do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
    }
    printf("  --numa TYPE           attempt optimizations that help on some NUMA systems\n");
    printf("                          - distribute: spread execution evenly over all nodes\n");
    printf("                          - isolate: only spawn threads on CPUs on the node that execution started on\n");
    printf("                          - numactl: use the CPU map provided by numactl\n");
    printf("                        if run without this previously, it is recommended to drop the system page cache before using this\n");
    printf("                        see https://github.com/ggerganov/llama.cpp/issues/1437\n");
    if (llama_supports_gpu_offload()) {
        printf("  -ngl N, --n-gpu-layers N\n");
        printf("                        number of layers to store in VRAM\n");
        printf("  -ngld N, --n-gpu-layers-draft N\n");
        printf("                        number of layers to store in VRAM for the draft model\n");
        printf("  -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
        printf("                        how to split the model across multiple GPUs, one of:\n");
        printf("                          - none: use one GPU only\n");
        printf("                          - layer (default): split layers and KV across GPUs\n");
        printf("                          - row: split rows across GPUs\n");
        printf("  -ts SPLIT, --tensor-split SPLIT\n");
        printf("                        fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
        printf("  -mg i, --main-gpu i   the GPU to use for the model (with split-mode = none),\n");
        printf("                        or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
    }
    printf("  --verbose-prompt      print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
    printf("  --no-display-prompt   don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
    printf("  -gan N, --grp-attn-n N\n");
    printf("                        group-attention factor (default: %d)\n", params.grp_attn_n);
    printf("  -gaw N, --grp-attn-w N\n");
    printf("                        group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
    printf("  -dkvc, --dump-kv-cache\n");
    printf("                        verbose print of the KV cache\n");
    printf("  -nkvo, --no-kv-offload\n");
    printf("                        disable KV offload\n");
    printf("  -ctk TYPE, --cache-type-k TYPE\n");
    printf("                        KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
    printf("  -ctv TYPE, --cache-type-v TYPE\n");
    printf("                        KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
    printf("  --simple-io           use basic IO for better compatibility in subprocesses and limited consoles\n");
    printf("  --lora FNAME          apply LoRA adapter (implies --no-mmap)\n");
    printf("  --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
    printf("  --lora-base FNAME     optional model to use as a base for the layers modified by the LoRA adapter\n");
    printf("  --control-vector FNAME\n");
    printf("                        add a control vector\n");
    printf("  --control-vector-scaled FNAME S\n");
    printf("                        add a control vector with user defined scaling S\n");
    printf("  --control-vector-layer-range START END\n");
    printf("                        layer range to apply the control vector(s) to, start and end inclusive\n");
    printf("  -m FNAME, --model FNAME\n");
    printf("                        model path (default: models/$filename with filename from --hf-file or --model-url if set, otherwise %s)\n", DEFAULT_MODEL_PATH);
    printf("  -md FNAME, --model-draft FNAME\n");
    printf("                        draft model for speculative decoding (default: unused)\n");
    printf("  -mu MODEL_URL, --model-url MODEL_URL\n");
    printf("                        model download url (default: unused)\n");
    printf("  -hfr REPO, --hf-repo REPO\n");
    printf("                        Hugging Face model repository (default: unused)\n");
    printf("  -hff FILE, --hf-file FILE\n");
    printf("                        Hugging Face model file (default: unused)\n");
    printf("  -ld LOGDIR, --logdir LOGDIR\n");
    printf("                        path under which to save YAML logs (no logging if unset)\n");
    printf("  -lcs FNAME, --lookup-cache-static FNAME\n");
    printf("                        path to static lookup cache to use for lookup decoding (not updated by generation)\n");
    printf("  -lcd FNAME, --lookup-cache-dynamic FNAME\n");
    printf("                        path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
    printf("  --override-kv KEY=TYPE:VALUE\n");
    printf("                        advanced option to override model metadata by key. may be specified multiple times.\n");
    printf("                        types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
    printf("  -ptc N, --print-token-count N\n");
    printf("                        print token count every N tokens (default: %d)\n", params.n_print);
    printf("  --check-tensors       check model tensor data for invalid values\n");
    printf("\n");
#ifndef LOG_DISABLE_LOGS
    log_print_usage();
#endif // LOG_DISABLE_LOGS
}

std::string get_system_info(const gpt_params & params) {
    std::ostringstream os;

    os << "system_info: n_threads = " << params.n_threads;
    if (params.n_threads_batch != -1) {
        os << " (n_threads_batch = " << params.n_threads_batch << ")";
    }
    os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();

    return os.str();
}

std::string gpt_random_prompt(std::mt19937 & rng) {
    const int r = rng() % 10;
    switch (r) {
        case 0: return "So";
        case 1: return "Once upon a time";
        case 2: return "When";
        case 3: return "The";
        case 4: return "After";
        case 5: return "If";
        case 6: return "import";
        case 7: return "He";
        case 8: return "She";
        case 9: return "They";
    }

    GGML_UNREACHABLE();
}

// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool validate_file_name(const std::string & filename) {
    if (!filename.length()) {
        // Empty filename invalid
        return false;
    }
    if (filename.length() > 255) {
        // Limit at common largest possible filename on Linux filesystems
        // to avoid unnecessary further validation
        // (On systems with smaller limits it will be caught by the OS)
        return false;
    }

    std::u32string filename_utf32;
    try {
        std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
        filename_utf32 = converter.from_bytes(filename);

        // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
        // or invalid encodings were encountered. Reject such attempts
        std::string filename_reencoded = converter.to_bytes(filename_utf32);
        if (filename_reencoded != filename) {
            return false;
        }
    } catch (const std::exception &) {
        return false;
    }

    // Check for forbidden codepoints:
    // - Control characters
    // - Unicode equivalents of illegal characters
    // - UTF-16 surrogate pairs
    // - UTF-8 replacement character
    // - Byte order mark (BOM)
    // - Illegal characters: / \ : * ? " < > |
    for (char32_t c : filename_utf32) {
        if (c <= 0x1F // Control characters (C0)
            || c == 0x7F // Control characters (DEL)
            || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
            || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
            || c == 0x2215 // Division Slash (forward slash equivalent)
            || c == 0x2216 // Set Minus (backslash equivalent)
            || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
            || c == 0xFFFD // Replacement Character (UTF-8)
            || c == 0xFEFF // Byte Order Mark (BOM)
            || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
            || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
            return false;
        }
    }

    // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
    // Unicode and other whitespace is not affected, only 0x20 space
    if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
        return false;
    }

    // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
    if (filename.find("..") != std::string::npos) {
        return false;
    }

    // Reject "."
    if (filename == ".") {
        return false;
    }

    return true;
}

//
// String utils
//

std::vector<std::string> string_split(std::string input, char separator) {
    std::vector<std::string> parts;
    size_t separator_pos = input.find(separator);
    while (separator_pos != std::string::npos) {
        std::string part = input.substr(0, separator_pos);
        parts.emplace_back(part);
        input = input.substr(separator_pos + 1);
        separator_pos = input.find(separator);
    }
    parts.emplace_back(input);
    return parts;
}

std::string string_strip(const std::string & str) {
    size_t start = 0;
    size_t end = str.size();
    while (start < end && std::isspace(str[start])) {
        start++;
    }
    while (end > start && std::isspace(str[end - 1])) {
        end--;
    }
    return str.substr(start, end - start);
}

std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
    std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
        {"top_k",       llama_sampler_type::TOP_K},
        {"top_p",       llama_sampler_type::TOP_P},
        {"typical_p",   llama_sampler_type::TYPICAL_P},
        {"min_p",       llama_sampler_type::MIN_P},
        {"tfs_z",       llama_sampler_type::TFS_Z},
        {"temperature", llama_sampler_type::TEMPERATURE}
    };

    // since samplers names are written multiple ways
    // make it ready for both system names and input names
    std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
        {"top-k",       llama_sampler_type::TOP_K},
        {"top-p",       llama_sampler_type::TOP_P},
        {"nucleus",     llama_sampler_type::TOP_P},
        {"typical-p",   llama_sampler_type::TYPICAL_P},
        {"typical",     llama_sampler_type::TYPICAL_P},
        {"min-p",       llama_sampler_type::MIN_P},
        {"tfs-z",       llama_sampler_type::TFS_Z},
        {"tfs",         llama_sampler_type::TFS_Z},
        {"temp",        llama_sampler_type::TEMPERATURE}
    };

    std::vector<llama_sampler_type> sampler_types;
    sampler_types.reserve(names.size());
    for (const auto & name : names)
    {
        auto sampler_item = sampler_canonical_name_map.find(name);
        if (sampler_item != sampler_canonical_name_map.end())
        {
            sampler_types.push_back(sampler_item->second);
        }
        else
        {
            if (allow_alt_names)
            {
                sampler_item = sampler_alt_name_map.find(name);
                if (sampler_item != sampler_alt_name_map.end())
                {
                    sampler_types.push_back(sampler_item->second);
                }
            }
        }
    }
    return sampler_types;
}

std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
    std::unordered_map<char, llama_sampler_type> sampler_name_map {
        {'k', llama_sampler_type::TOP_K},
        {'p', llama_sampler_type::TOP_P},
        {'y', llama_sampler_type::TYPICAL_P},
        {'m', llama_sampler_type::MIN_P},
        {'f', llama_sampler_type::TFS_Z},
        {'t', llama_sampler_type::TEMPERATURE}
    };

    std::vector<llama_sampler_type> sampler_types;
    sampler_types.reserve(names_string.size());
    for (const auto & c : names_string) {
        const auto sampler_item = sampler_name_map.find(c);
        if (sampler_item != sampler_name_map.end()) {
            sampler_types.push_back(sampler_item->second);
        }
    }
    return sampler_types;
}

std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
    switch (sampler_type) {
        case llama_sampler_type::TOP_K:       return "top_k";
        case llama_sampler_type::TFS_Z:       return "tfs_z";
        case llama_sampler_type::TYPICAL_P:   return "typical_p";
        case llama_sampler_type::TOP_P:       return "top_p";
        case llama_sampler_type::MIN_P:       return "min_p";
        case llama_sampler_type::TEMPERATURE: return "temperature";
        default : return "";
    }
}

//
// Model utils
//

struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
    auto mparams = llama_model_default_params();

    if (params.n_gpu_layers != -1) {
        mparams.n_gpu_layers = params.n_gpu_layers;
    }
    mparams.main_gpu        = params.main_gpu;
    mparams.split_mode      = params.split_mode;
    mparams.tensor_split    = params.tensor_split;
    mparams.use_mmap        = params.use_mmap;
    mparams.use_mlock       = params.use_mlock;
    mparams.check_tensors   = params.check_tensors;
    if (params.kv_overrides.empty()) {
        mparams.kv_overrides = NULL;
    } else {
        GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
        mparams.kv_overrides = params.kv_overrides.data();
    }

    return mparams;
}

static ggml_type kv_cache_type_from_str(const std::string & s) {
    if (s == "f32") {
        return GGML_TYPE_F32;
    }
    if (s == "f16") {
        return GGML_TYPE_F16;
    }
    if (s == "q8_0") {
        return GGML_TYPE_Q8_0;
    }
    if (s == "q4_0") {
        return GGML_TYPE_Q4_0;
    }
    if (s == "q4_1") {
        return GGML_TYPE_Q4_1;
    }
    if (s == "iq4_nl") {
        return GGML_TYPE_IQ4_NL;
    }
    if (s == "q5_0") {
        return GGML_TYPE_Q5_0;
    }
    if (s == "q5_1") {
        return GGML_TYPE_Q5_1;
    }

    throw std::runtime_error("Invalid cache type: " + s);
}

struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
    auto cparams = llama_context_default_params();

    cparams.n_ctx             = params.n_ctx;
    cparams.n_seq_max         = params.n_parallel;
    cparams.n_batch           = params.n_batch;
    cparams.n_ubatch          = params.n_ubatch;
    cparams.n_threads         = params.n_threads;
    cparams.n_threads_batch   = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
    cparams.seed              = params.seed;
    cparams.logits_all        = params.logits_all;
    cparams.embeddings        = params.embedding;
    cparams.rope_scaling_type = params.rope_scaling_type;
    cparams.rope_freq_base    = params.rope_freq_base;
    cparams.rope_freq_scale   = params.rope_freq_scale;
    cparams.yarn_ext_factor   = params.yarn_ext_factor;
    cparams.yarn_attn_factor  = params.yarn_attn_factor;
    cparams.yarn_beta_fast    = params.yarn_beta_fast;
    cparams.yarn_beta_slow    = params.yarn_beta_slow;
    cparams.yarn_orig_ctx     = params.yarn_orig_ctx;
    cparams.pooling_type      = params.pooling_type;
    cparams.defrag_thold      = params.defrag_thold;
    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;
    cparams.offload_kqv       = !params.no_kv_offload;
    cparams.flash_attn        = params.flash_attn;

    cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
    cparams.type_v = kv_cache_type_from_str(params.cache_type_v);

    return cparams;
}

void llama_batch_clear(struct llama_batch & batch) {
    batch.n_tokens = 0;
}

void llama_batch_add(
                 struct llama_batch & batch,
                        llama_token   id,
                          llama_pos   pos,
    const std::vector<llama_seq_id> & seq_ids,
                               bool   logits) {
    batch.token   [batch.n_tokens] = id;
    batch.pos     [batch.n_tokens] = pos;
    batch.n_seq_id[batch.n_tokens] = seq_ids.size();
    for (size_t i = 0; i < seq_ids.size(); ++i) {
        batch.seq_id[batch.n_tokens][i] = seq_ids[i];
    }
    batch.logits  [batch.n_tokens] = logits;

    batch.n_tokens++;
}

#ifdef LLAMA_USE_CURL

static bool starts_with(const std::string & str, const std::string & prefix) {
    // While we wait for C++20's std::string::starts_with...
    return str.rfind(prefix, 0) == 0;
}

static bool llama_download_file(const std::string & url, const std::string & path) {

    // Initialize libcurl
    std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
    if (!curl) {
        fprintf(stderr, "%s: error initializing libcurl\n", __func__);
        return false;
    }

    bool force_download = false;

    // Set the URL, allow to follow http redirection
    curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
    curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);

#if defined(_WIN32)
    // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
    //   operating system. Currently implemented under MS-Windows.
    curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif

    // Check if the file already exists locally
    struct stat model_file_info;
    auto file_exists = (stat(path.c_str(), &model_file_info) == 0);

    // If the file exists, check its JSON metadata companion file.
    std::string metadata_path = path + ".json";
    nlohmann::json metadata;
    std::string etag;
    std::string last_modified;

    if (file_exists) {
        // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
        std::ifstream metadata_in(metadata_path);
        if (metadata_in.good()) {
            try {
                metadata_in >> metadata;
                fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
                if (metadata.contains("url") && metadata["url"].is_string()) {
                    auto previous_url = metadata["url"].get<std::string>();
                    if (previous_url != url) {
                        fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
                        return false;
                    }
                }
                if (metadata.contains("etag") && metadata["etag"].is_string()) {
                    etag = metadata["etag"];
                }
                if (metadata.contains("lastModified") && metadata["lastModified"].is_string()) {
                    last_modified = metadata["lastModified"];
                }
            } catch (const nlohmann::json::exception & e) {
                fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
                return false;
            }
        }
    } else {
        fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str());
    }

    // Send a HEAD request to retrieve the etag and last-modified headers
    struct llama_load_model_from_url_headers {
        std::string etag;
        std::string last_modified;
    };
    llama_load_model_from_url_headers headers;
    {
        typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
        auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
            llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;

            static std::regex header_regex("([^:]+): (.*)\r\n");
            static std::regex etag_regex("ETag", std::regex_constants::icase);
            static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);

            std::string header(buffer, n_items);
            std::smatch match;
            if (std::regex_match(header, match, header_regex)) {
                const std::string & key = match[1];
                const std::string & value = match[2];
                if (std::regex_match(key, match, etag_regex)) {
                    headers->etag = value;
                } else if (std::regex_match(key, match, last_modified_regex)) {
                    headers->last_modified = value;
                }
            }
            return n_items;
        };

        curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
        curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
        curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
        curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);

        CURLcode res = curl_easy_perform(curl.get());
        if (res != CURLE_OK) {
            fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
            return false;
        }

        long http_code = 0;
        curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
        if (http_code != 200) {
            // HEAD not supported, we don't know if the file has changed
            // force trigger downloading
            force_download = true;
            fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
        }
    }

    bool should_download = !file_exists || force_download;
    if (!should_download) {
        if (!etag.empty() && etag != headers.etag) {
            fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
            should_download = true;
        } else if (!last_modified.empty() && last_modified != headers.last_modified) {
            fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
            should_download = true;
        }
    }
    if (should_download) {
        std::string path_temporary = path + ".downloadInProgress";
        if (file_exists) {
            fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
            if (remove(path.c_str()) != 0) {
                fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str());
                return false;
            }
        }

        // Set the output file
        std::unique_ptr<FILE, decltype(&fclose)> outfile(fopen(path_temporary.c_str(), "wb"), fclose);
        if (!outfile) {
            fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
            return false;
        }

        typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
        auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
            return fwrite(data, size, nmemb, (FILE *)fd);
        };
        curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
        curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
        curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());

        //  display download progress
        curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);

        // helper function to hide password in URL
        auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
            std::size_t protocol_pos = url.find("://");
            if (protocol_pos == std::string::npos) {
                return url;  // Malformed URL
            }

            std::size_t at_pos = url.find('@', protocol_pos + 3);
            if (at_pos == std::string::npos) {
                return url;  // No password in URL
            }

            return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
        };

        // start the download
        fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
                llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
        auto res = curl_easy_perform(curl.get());
        if (res != CURLE_OK) {
            fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
            return false;
        }

        long http_code = 0;
        curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
        if (http_code < 200 || http_code >= 400) {
            fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
            return false;
        }

        // Causes file to be closed explicitly here before we rename it.
        outfile.reset();

        // Write the updated JSON metadata file.
        metadata.update({
            {"url", url},
            {"etag", headers.etag},
            {"lastModified", headers.last_modified}
        });
        std::ofstream(metadata_path) << metadata.dump(4);
        fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str());

        if (rename(path_temporary.c_str(), path.c_str()) != 0) {
            fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
            return false;
        }
    }

    return true;
}

struct llama_model * llama_load_model_from_url(
        const char * model_url,
        const char * path_model,
        const struct llama_model_params & params) {
    // Basic validation of the model_url
    if (!model_url || strlen(model_url) == 0) {
        fprintf(stderr, "%s: invalid model_url\n", __func__);
        return NULL;
    }

    if (!llama_download_file(model_url, path_model)) {
        return NULL;
    }

    // check for additional GGUFs split to download
    int n_split = 0;
    {
        struct gguf_init_params gguf_params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ NULL,
        };
        auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
        if (!ctx_gguf) {
            fprintf(stderr, "\n%s:  failed to load input GGUF from %s\n", __func__, path_model);
            return NULL;
        }

        auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
        if (key_n_split >= 0) {
            n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
        }

        gguf_free(ctx_gguf);
    }

    if (n_split > 1) {
        char split_prefix[PATH_MAX] = {0};
        char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};

        // Verify the first split file format
        // and extract split URL and PATH prefixes
        {
            if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
                fprintf(stderr, "\n%s: unexpected model file name: %s"
                                " n_split=%d\n", __func__, path_model, n_split);
                return NULL;
            }

            if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
                fprintf(stderr, "\n%s: unexpected model url: %s"
                                " n_split=%d\n", __func__, model_url, n_split);
                return NULL;
            }
        }

        // Prepare download in parallel
        std::vector<std::future<bool>> futures_download;
        for (int idx = 1; idx < n_split; idx++) {
            futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split](int download_idx) -> bool {
                char split_path[PATH_MAX] = {0};
                llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);

                char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
                llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);

                return llama_download_file(split_url, split_path);
            }, idx));
        }

        // Wait for all downloads to complete
        for (auto & f : futures_download) {
            if (!f.get()) {
                return NULL;
            }
        }
    }

    return llama_load_model_from_file(path_model, params);
}

struct llama_model * llama_load_model_from_hf(
        const char * repo,
        const char * model,
        const char * path_model,
        const struct llama_model_params & params) {
    // construct hugging face model url:
    //
    //  --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
    //    https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
    //
    //  --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
    //    https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
    //

    std::string model_url = "https://huggingface.co/";
    model_url += repo;
    model_url += "/resolve/main/";
    model_url += model;

    return llama_load_model_from_url(model_url.c_str(), path_model, params);
}

#else

struct llama_model * llama_load_model_from_url(
        const char * /*model_url*/,
        const char * /*path_model*/,
        const struct llama_model_params & /*params*/) {
    fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
    return nullptr;
}

struct llama_model * llama_load_model_from_hf(
        const char * /*repo*/,
        const char * /*model*/,
        const char * /*path_model*/,
        const struct llama_model_params & /*params*/) {
    fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
    return nullptr;
}

#endif // LLAMA_USE_CURL

std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
    auto mparams = llama_model_params_from_gpt_params(params);

    llama_model * model = nullptr;

    if (!params.hf_repo.empty() && !params.hf_file.empty()) {
        model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
    } else if (!params.model_url.empty()) {
        model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
    } else {
        model = llama_load_model_from_file(params.model.c_str(), mparams);
    }

    if (model == NULL) {
        fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
        return std::make_tuple(nullptr, nullptr);
    }

    auto cparams = llama_context_params_from_gpt_params(params);

    llama_context * lctx = llama_new_context_with_model(model, cparams);
    if (lctx == NULL) {
        fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
        llama_free_model(model);
        return std::make_tuple(nullptr, nullptr);
    }

    if (!params.control_vectors.empty()) {
        if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
        if (params.control_vector_layer_end   <= 0) params.control_vector_layer_end   = llama_n_layer(model);

        const auto cvec = llama_control_vector_load(params.control_vectors);
        if (cvec.n_embd == -1) {
            llama_free(lctx);
            llama_free_model(model);
            return std::make_tuple(nullptr, nullptr);
        }

        int err = llama_control_vector_apply(lctx,
                                             cvec.data.data(),
                                             cvec.data.size(),
                                             cvec.n_embd,
                                             params.control_vector_layer_start,
                                             params.control_vector_layer_end);
        if (err) {
            llama_free(lctx);
            llama_free_model(model);
            return std::make_tuple(nullptr, nullptr);
        }
    }

    for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
        const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
        float lora_scale = std::get<1>(params.lora_adapter[i]);
        int err = llama_model_apply_lora_from_file(model,
                                             lora_adapter.c_str(),
                                             lora_scale,
                                             ((i > 0) || params.lora_base.empty())
                                                ? NULL
                                                : params.lora_base.c_str(),
                                             params.n_threads);
        if (err != 0) {
            fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
            llama_free(lctx);
            llama_free_model(model);
            return std::make_tuple(nullptr, nullptr);
        }
    }

    if (params.ignore_eos) {
        params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
    }

    if (params.warmup) {
        LOG("warming up the model with an empty run\n");

        std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
        llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
        llama_kv_cache_clear(lctx);
        llama_synchronize(lctx);
        llama_reset_timings(lctx);
    }

    return std::make_tuple(model, lctx);
}

//
// Vocab utils
//

std::vector<llama_token> llama_tokenize(
  const struct llama_context * ctx,
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
    return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
}

std::vector<llama_token> llama_tokenize(
    const struct llama_model * model,
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
    // upper limit for the number of tokens
    int n_tokens = text.length() + 2 * add_special;
    std::vector<llama_token> result(n_tokens);
    n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
    if (n_tokens < 0) {
        result.resize(-n_tokens);
        int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
        GGML_ASSERT(check == -n_tokens);
    } else {
        result.resize(n_tokens);
    }
    return result;
}

std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
    std::vector<char> result(8, 0);
    const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
    if (n_tokens < 0) {
        result.resize(-n_tokens);
        int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
        GGML_ASSERT(check == -n_tokens);
    } else {
        result.resize(n_tokens);
    }

    return std::string(result.data(), result.size());
}

std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
    const llama_token bos_id = llama_token_bos(llama_get_model(ctx));

    std::string piece;
    std::string result;

    for (size_t i = 0; i < tokens.size(); ++i) {
        piece = llama_token_to_piece(ctx, tokens[i]);

        // remove the leading space of the first non-BOS token
        if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
            piece = piece.substr(1);
        }

        result += piece;
    }

    return result;
}

std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
    std::string piece;
    std::string result;

    for (size_t i = 0; i < tokens.size(); ++i) {
        piece = llama_token_to_piece(ctx, tokens[i]);

        result += piece;
    }

    // NOTE: the original tokenizer decodes bytes after collecting the pieces.
    return result;
}

bool llama_should_add_bos_token(const llama_model * model) {
    const int add_bos = llama_add_bos_token(model);

    return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
}

//
// YAML utils
//

// returns true if successful, false otherwise
bool create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
    std::wstring wpath = converter.from_bytes(path);

    // if the path already exists, check whether it's a directory
    const DWORD attributes = GetFileAttributesW(wpath.c_str());
    if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
        return true;
    }

    size_t pos_slash = 0;

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
        const std::wstring subpath = wpath.substr(0, pos_slash);
        const wchar_t * test = subpath.c_str();

        const bool success = CreateDirectoryW(test, NULL);
        if (!success) {
            const DWORD error = GetLastError();

            // if the path already exists, ensure that it's a directory
            if (error == ERROR_ALREADY_EXISTS) {
                const DWORD attributes = GetFileAttributesW(subpath.c_str());
                if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
                    return false;
                }
            } else {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#else
    // if the path already exists, check whether it's a directory
    struct stat info;
    if (stat(path.c_str(), &info) == 0) {
        return S_ISDIR(info.st_mode);
    }

    size_t pos_slash = 1; // skip leading slashes for directory creation

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
        const std::string subpath = path.substr(0, pos_slash);
        struct stat info;

        // if the path already exists, ensure that it's a directory
        if (stat(subpath.c_str(), &info) == 0) {
            if (!S_ISDIR(info.st_mode)) {
                return false;
            }
        } else {
            // create parent directories
            const int ret = mkdir(subpath.c_str(), 0755);
            if (ret != 0) {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#endif // _WIN32
}

void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
    if (data.empty()) {
        fprintf(stream, "%s:\n", prop_name);
        return;
    }

    fprintf(stream, "%s: [", prop_name);
    for (size_t i = 0; i < data.size() - 1; ++i) {
        fprintf(stream, "%e, ", data[i]);
    }
    fprintf(stream, "%e]\n", data.back());
}

void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
    if (data.empty()) {
        fprintf(stream, "%s:\n", prop_name);
        return;
    }

    fprintf(stream, "%s: [", prop_name);
    for (size_t i = 0; i < data.size() - 1; ++i) {
        fprintf(stream, "%d, ", data[i]);
    }
    fprintf(stream, "%d]\n", data.back());
}

void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
    std::string data_str(data == NULL ? "" : data);

    if (data_str.empty()) {
        fprintf(stream, "%s:\n", prop_name);
        return;
    }

    size_t pos_start = 0;
    size_t pos_found = 0;

    if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
        data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
        data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
        data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
        data_str = "\"" + data_str + "\"";
        fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
        return;
    }

    if (data_str.find('\n') == std::string::npos) {
        fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
        return;
    }

    fprintf(stream, "%s: |\n", prop_name);
    while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
        fprintf(stream, "  %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
        pos_start = pos_found + 1;
    }
}

std::string get_sortable_timestamp() {
    using clock = std::chrono::system_clock;

    const clock::time_point current_time = clock::now();
    const time_t as_time_t = clock::to_time_t(current_time);
    char timestamp_no_ns[100];
    std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));

    const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
        current_time.time_since_epoch() % 1000000000).count();
    char timestamp_ns[11];
    snprintf(timestamp_ns, 11, "%09" PRId64, ns);

    return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}

void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
                               const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
    const llama_sampling_params & sparams = params.sparams;

    fprintf(stream, "build_commit: %s\n",        LLAMA_COMMIT);
    fprintf(stream, "build_number: %d\n",        LLAMA_BUILD_NUMBER);
    fprintf(stream, "cpu_has_arm_fma: %s\n",     ggml_cpu_has_arm_fma()     ? "true" : "false");
    fprintf(stream, "cpu_has_avx: %s\n",         ggml_cpu_has_avx()         ? "true" : "false");
    fprintf(stream, "cpu_has_avx_vnni: %s\n",    ggml_cpu_has_avx_vnni()    ? "true" : "false");
    fprintf(stream, "cpu_has_avx2: %s\n",        ggml_cpu_has_avx2()        ? "true" : "false");
    fprintf(stream, "cpu_has_avx512: %s\n",      ggml_cpu_has_avx512()      ? "true" : "false");
    fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
    fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
    fprintf(stream, "cpu_has_cuda: %s\n",        ggml_cpu_has_cuda()        ? "true" : "false");
    fprintf(stream, "cpu_has_vulkan: %s\n",      ggml_cpu_has_vulkan()      ? "true" : "false");
    fprintf(stream, "cpu_has_clblast: %s\n",     ggml_cpu_has_clblast()     ? "true" : "false");
    fprintf(stream, "cpu_has_kompute: %s\n",     ggml_cpu_has_kompute()     ? "true" : "false");
    fprintf(stream, "cpu_has_fma: %s\n",         ggml_cpu_has_fma()         ? "true" : "false");
    fprintf(stream, "cpu_has_gpublas: %s\n",     ggml_cpu_has_gpublas()     ? "true" : "false");
    fprintf(stream, "cpu_has_neon: %s\n",        ggml_cpu_has_neon()        ? "true" : "false");
    fprintf(stream, "cpu_has_f16c: %s\n",        ggml_cpu_has_f16c()        ? "true" : "false");
    fprintf(stream, "cpu_has_fp16_va: %s\n",     ggml_cpu_has_fp16_va()     ? "true" : "false");
    fprintf(stream, "cpu_has_wasm_simd: %s\n",   ggml_cpu_has_wasm_simd()   ? "true" : "false");
    fprintf(stream, "cpu_has_blas: %s\n",        ggml_cpu_has_blas()        ? "true" : "false");
    fprintf(stream, "cpu_has_sse3: %s\n",        ggml_cpu_has_sse3()        ? "true" : "false");
    fprintf(stream, "cpu_has_vsx: %s\n",         ggml_cpu_has_vsx()         ? "true" : "false");
    fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");

#ifdef NDEBUG
    fprintf(stream, "debug: false\n");
#else
    fprintf(stream, "debug: true\n");
#endif // NDEBUG

    fprintf(stream, "model_desc: %s\n", model_desc);
    fprintf(stream, "n_vocab: %d  # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));

#ifdef __OPTIMIZE__
    fprintf(stream, "optimize: true\n");
#else
    fprintf(stream, "optimize: false\n");
#endif // __OPTIMIZE__

    fprintf(stream, "time: %s\n", timestamp.c_str());

    fprintf(stream, "\n");
    fprintf(stream, "###############\n");
    fprintf(stream, "# User Inputs #\n");
    fprintf(stream, "###############\n");
    fprintf(stream, "\n");

    fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
    fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
    dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
    fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
    fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
    fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
    fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
    fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
    fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
    fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
    dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
    fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
    fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
    fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);

    const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
    const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
    fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");

    dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
    fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
    dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
    fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
    fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
    fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
    fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
    fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());

    fprintf(stream, "logit_bias:\n");
    for (std::pair<llama_token, float> lb : sparams.logit_bias) {
        if (ignore_eos && lb.first == logit_bias_eos->first) {
            continue;
        }
        fprintf(stream, "  %d: %f", lb.first, lb.second);
    }

    fprintf(stream, "lora:\n");
    for (std::tuple<std::string, float> la : params.lora_adapter) {
        if (std::get<1>(la) != 1.0f) {
            continue;
        }
        fprintf(stream, "  - %s\n", std::get<0>(la).c_str());
    }
    fprintf(stream, "lora_scaled:\n");
    for (std::tuple<std::string, float> la : params.lora_adapter) {
        if (std::get<1>(la) == 1.0f) {
            continue;
        }
        fprintf(stream, "  - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
    }
    fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
    fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
    fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
    fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
    fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
    fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
    fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
    fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
    fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
    fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
    fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
    fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
    fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
    fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
    fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
    fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
    fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
    fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
    dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
    fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
    fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
    fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
    dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
    fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
    fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);

    fprintf(stream, "reverse_prompt:\n");
    for (std::string ap : params.antiprompt) {
        size_t pos = 0;
        while ((pos = ap.find('\n', pos)) != std::string::npos) {
            ap.replace(pos, 1, "\\n");
            pos += 1;
        }

        fprintf(stream, "  - %s\n", ap.c_str());
    }

    fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
    fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
    fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
    fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
    fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
    fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
    fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);

    const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
    dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);

    fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
    fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
    fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
    fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
    fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
    fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
    fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
    fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
}

//
// KV cache utils
//

void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
    static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";

    printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
        view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);

    llama_kv_cache_view_cell * c_curr = view.cells;
    llama_seq_id * cs_curr = view.cells_sequences;

    for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
        if (i % row_size == 0) {
            printf("\n%5d: ", i);
        }
        int seq_count = 0;
        for (int j = 0; j < view.n_seq_max; j++) {
            if (cs_curr[j] >= 0) { seq_count++; }
        }
        putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
    }

    printf("\n=== Done dumping\n");
}

void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
    static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";

    printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
        view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);

    std::unordered_map<llama_seq_id, size_t> seqs;
    llama_kv_cache_view_cell * c_curr = view.cells;
    llama_seq_id * cs_curr = view.cells_sequences;

    for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
        for (int j = 0; j < view.n_seq_max; j++) {
            if (cs_curr[j] < 0) { continue; }
            if (seqs.find(cs_curr[j]) == seqs.end()) {
                if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
                const size_t sz = seqs.size();
                seqs[cs_curr[j]] = sz;
            }
        }
        if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
    }

    printf("=== Sequence legend: ");
    for (const auto & it : seqs) {
        printf("%zu=%d, ", it.second, it.first);
    }
    printf("'+'=other sequence ids");

    c_curr = view.cells;
    cs_curr = view.cells_sequences;
    for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
        if (i % row_size == 0) {
            printf("\n%5d: ", i);
        }
        for (int j = 0; j < view.n_seq_max; j++) {
            if (cs_curr[j] >= 0) {
                const auto & it = seqs.find(cs_curr[j]);
                putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
            } else {
                putchar('.');
            }
        }
        putchar(' ');
    }

    printf("\n=== Done dumping\n");
}

void llama_embd_normalize(const float * inp, float * out, int n) {
    double sum = 0.0;
    for (int i = 0; i < n; i++) {
        sum += inp[i] * inp[i];
    }
    sum = sqrt(sum);

    const float norm = sum > 0.0 ? 1.0f / sum : 0.0f;

    for (int i = 0; i < n; i++) {
        out[i] = inp[i] * norm;
    }
}

float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
    double sum  = 0.0;
    double sum1 = 0.0;
    double sum2 = 0.0;

    for (int i = 0; i < n; i++) {
        sum  += embd1[i] * embd2[i];
        sum1 += embd1[i] * embd1[i];
        sum2 += embd2[i] * embd2[i];
    }

    return sum / (sqrt(sum1) * sqrt(sum2));
}

//
// Control vector utils
//

static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
    int32_t n_tensors;

    size_t n_bytes = 0;

    uint32_t max_direction_layer = 0;

    llama_control_vector_data result = { -1, {} };

    // calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
    {
        struct ggml_init_params meta_params = {
            /* .mem_size   = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
            /* .mem_buffer = */ nullptr,
            /* .no_alloc   = */ true,
        };
        ggml_context * meta_ctx = ggml_init(meta_params);
        struct gguf_init_params meta_gguf_params = {
            /* .no_alloc = */ true,
            /* .ctx      = */ &meta_ctx,
        };
        struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
        if (!meta_ctx_gguf) {
            fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
            ggml_free(meta_ctx);
            return result;
        }

        n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
        for (int i = 0; i < n_tensors; i++) {
            std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);

            // split on '.'
            size_t dotpos = name.find('.');
            if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
                try {
                    uint32_t layer = std::stoi(name.substr(dotpos + 1));
                    if (layer == 0) {
                        fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
                        ggml_free(meta_ctx);
                        gguf_free(meta_ctx_gguf);
                        return result;
                    }
                    if (layer > max_direction_layer) {
                        max_direction_layer = layer;
                    }
                } catch (...) {
                    fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
                    ggml_free(meta_ctx);
                    gguf_free(meta_ctx_gguf);
                    return result;
                }
            }

            struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
            if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
                fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
                ggml_free(meta_ctx);
                gguf_free(meta_ctx_gguf);
                return result;
            }
            if (result.n_embd == -1) {
                result.n_embd = ggml_nelements(tensor_meta);
            } else if (ggml_nelements(tensor_meta) != result.n_embd) {
                fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
                ggml_free(meta_ctx);
                gguf_free(meta_ctx_gguf);
                return result;
            }
            n_bytes += ggml_nbytes(tensor_meta);
        }
        ggml_free(meta_ctx);
        gguf_free(meta_ctx_gguf);
    }

    if (n_tensors == 0) {
        fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
        return result;
    }

    // load and scale tensors into final control vector context
    struct ggml_init_params ggml_params = {
        /* .mem_size   = */ ggml_tensor_overhead() * n_tensors + n_bytes,
        /* .mem_buffer = */ nullptr,
        /* .no_alloc   = */ false,
    };
    struct ggml_context * ctx = ggml_init(ggml_params);

    struct gguf_init_params params = {
        /*.no_alloc = */ false,
        /*.ctx      = */ &ctx,
    };
    struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
    if (!ctx_gguf) {
        fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
        ggml_free(ctx);
        return result;
    }

    // do not store data for layer 0 (it's not used)
    result.data.resize(result.n_embd * max_direction_layer);

    for (uint32_t il = 1; il <= max_direction_layer; il++) {
        const std::string name = "direction." + std::to_string(il);
        const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());

        float * dst = result.data.data() + result.n_embd * (il - 1);

        if (tensor) {
            const float * src = (const float *) tensor->data;
            for (int j = 0; j < result.n_embd; j++) {
                dst[j] = src[j] * load_info.strength;
            }
        } else {
            for (int j = 0; j < result.n_embd; j++) {
                dst[j] = 0.0f;
            }
        }
    }

    return result;
}

llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
    llama_control_vector_data result = { -1, {} };

    for (const auto & info : load_infos) {
        auto cur = llama_control_vector_load_one(info);

        if (cur.n_embd == -1) {
            return result;
        }
        if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
            fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
            return result;
        }

        if (result.n_embd == -1) {
            result = std::move(cur);
        } else {
            for (size_t i = 0; i < cur.data.size(); i++) {
                result.data[i] += cur.data[i];
            }
        }
    }

    if (result.n_embd == -1) {
        fprintf(stderr, "%s: no vectors passed\n", __func__);
    }

    return result;
}