File size: 18,213 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Functions\n",
    "\n",
    "The OpenAI compatbile web server in `llama-cpp-python` supports function calling.\n",
    "\n",
    "Function calling allows API clients to specify a schema that gives the model a format it should respond in.\n",
    "Function calling in `llama-cpp-python` works by combining models pretrained for function calling such as [`functionary`](https://huggingface.co/meetkai) with constrained sampling to produce a response that is compatible with the schema.\n",
    "\n",
    "Note however that this improves but does not guarantee that the response will be compatible with the schema.\n",
    "\n",
    "## Requirements\n",
    "\n",
    "Before we begin you will need the following:\n",
    "\n",
    "- A running `llama-cpp-python` server with a function calling compatible model. [See here](https://llama-cpp-python.readthedocs.io/en/latest/server/#function-calling)\n",
    "- The OpenAI Python Client `pip install openai`\n",
    "- (Optional) The Instructor Python Library `pip install instructor`\n",
    "\n",
    "## Function Calling with OpenAI Python Client\n",
    "\n",
    "We'll start with a basic demo that only uses the OpenAI Python Client."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ChatCompletion(id='chatcmpl-a2d9eb9f-7354-472f-b6ad-4d7a807729a3', choices=[Choice(finish_reason='stop', index=0, message=ChatCompletionMessage(content='The current weather in San Francisco is **72°F** (22°C).\\n ', role='assistant', function_call=None, tool_calls=None))], created=1699638365, model='gpt-3.5-turbo-1106', object='chat.completion', system_fingerprint=None, usage=CompletionUsage(completion_tokens=22, prompt_tokens=136, total_tokens=158))\n"
     ]
    }
   ],
   "source": [
    "import openai\n",
    "import json\n",
    "\n",
    "\n",
    "client = openai.OpenAI(\n",
    "    api_key = \"sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\", # can be anything\n",
    "    base_url = \"http://100.64.159.73:8000/v1\" # NOTE: Replace with IP address and port of your llama-cpp-python server\n",
    ")\n",
    "\n",
    "# Example dummy function hard coded to return the same weather\n",
    "# In production, this could be your backend API or an external API\n",
    "def get_current_weather(location, unit=\"fahrenheit\"):\n",
    "    \"\"\"Get the current weather in a given location\"\"\"\n",
    "    if \"tokyo\" in location.lower():\n",
    "        return json.dumps({\"location\": \"Tokyo\", \"temperature\": \"10\", \"unit\": \"celsius\"})\n",
    "    elif \"san francisco\" in location.lower():\n",
    "        return json.dumps({\"location\": \"San Francisco\", \"temperature\": \"72\", \"unit\": \"fahrenheit\"})\n",
    "    elif \"paris\" in location.lower():\n",
    "        return json.dumps({\"location\": \"Paris\", \"temperature\": \"22\", \"unit\": \"celsius\"})\n",
    "    else:\n",
    "        return json.dumps({\"location\": location, \"temperature\": \"unknown\"})\n",
    "\n",
    "def run_conversation():\n",
    "    # Step 1: send the conversation and available functions to the model\n",
    "    messages = [{\"role\": \"user\", \"content\": \"What's the weather like in San Francisco, Tokyo, and Paris?\"}]\n",
    "    tools = [\n",
    "        {\n",
    "            \"type\": \"function\",\n",
    "            \"function\": {\n",
    "                \"name\": \"get_current_weather\",\n",
    "                \"description\": \"Get the current weather in a given location\",\n",
    "                \"parameters\": {\n",
    "                    \"type\": \"object\",\n",
    "                    \"properties\": {\n",
    "                        \"location\": {\n",
    "                            \"type\": \"string\",\n",
    "                            \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
    "                        },\n",
    "                        \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"]},\n",
    "                    },\n",
    "                    \"required\": [\"location\"],\n",
    "                },\n",
    "            },\n",
    "        }\n",
    "    ]\n",
    "    response = client.chat.completions.create(\n",
    "        model=\"gpt-3.5-turbo-1106\",\n",
    "        messages=messages,\n",
    "        tools=tools,\n",
    "        tool_choice=\"auto\",  # auto is default, but we'll be explicit\n",
    "    )\n",
    "    response_message = response.choices[0].message\n",
    "    tool_calls = response_message.tool_calls\n",
    "    # Step 2: check if the model wanted to call a function\n",
    "    if tool_calls:\n",
    "        # Step 3: call the function\n",
    "        # Note: the JSON response may not always be valid; be sure to handle errors\n",
    "        available_functions = {\n",
    "            \"get_current_weather\": get_current_weather,\n",
    "        }  # only one function in this example, but you can have multiple\n",
    "        messages.append(response_message)  # extend conversation with assistant's reply\n",
    "        # Step 4: send the info for each function call and function response to the model\n",
    "        for tool_call in tool_calls:\n",
    "            function_name = tool_call.function.name\n",
    "            function_to_call = available_functions[function_name]\n",
    "            function_args = json.loads(tool_call.function.arguments)\n",
    "            function_response = function_to_call(\n",
    "                location=function_args.get(\"location\"),\n",
    "                unit=function_args.get(\"unit\"),\n",
    "            )\n",
    "            messages.append(\n",
    "                {\n",
    "                    \"tool_call_id\": tool_call.id,\n",
    "                    \"role\": \"tool\",\n",
    "                    \"name\": function_name,\n",
    "                    \"content\": function_response,\n",
    "                }\n",
    "            )  # extend conversation with function response\n",
    "        second_response = client.chat.completions.create(\n",
    "            model=\"gpt-3.5-turbo-1106\",\n",
    "            messages=messages,\n",
    "        )  # get a new response from the model where it can see the function response\n",
    "        return second_response\n",
    "print(run_conversation())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Function Calling with Instructor\n",
    "\n",
    "The above example is a bit verbose and requires you to manually verify the schema.\n",
    "\n",
    "For our next examples we'll use the `instructor` library to simplify the process and accomplish a number of different tasks with function calling.\n",
    "\n",
    "You'll first need to install the [`instructor`](https://github.com/jxnl/instructor/).\n",
    "\n",
    "You can do so by running the following command in your terminal:\n",
    "\n",
    "```bash\n",
    "pip install instructor\n",
    "```\n",
    "\n",
    "Below we'll go through a few basic examples taken directly from the [instructor cookbook](https://jxnl.github.io/instructor/)\n",
    "\n",
    "## Basic Usage"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "name='Jason' age=25\n"
     ]
    }
   ],
   "source": [
    "import instructor\n",
    "from pydantic import BaseModel\n",
    "\n",
    "# Enables `response_model`\n",
    "client = instructor.patch(client=client)\n",
    "\n",
    "class UserDetail(BaseModel):\n",
    "    name: str\n",
    "    age: int\n",
    "\n",
    "user = client.chat.completions.create(\n",
    "    model=\"gpt-3.5-turbo\",\n",
    "    response_model=UserDetail,\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"Extract Jason is 25 years old\"},\n",
    "    ]\n",
    ")\n",
    "\n",
    "assert isinstance(user, UserDetail)\n",
    "assert user.name == \"Jason\"\n",
    "assert user.age == 25\n",
    "\n",
    "print(user)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Text Classification\n",
    "\n",
    "### Single-Label Classification"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "class_label=<Labels.SPAM: 'spam'>\n"
     ]
    }
   ],
   "source": [
    "import enum\n",
    "\n",
    "class Labels(str, enum.Enum):\n",
    "    \"\"\"Enumeration for single-label text classification.\"\"\"\n",
    "    SPAM = \"spam\"\n",
    "    NOT_SPAM = \"not_spam\"\n",
    "\n",
    "class SinglePrediction(BaseModel):\n",
    "    \"\"\"\n",
    "    Class for a single class label prediction.\n",
    "    \"\"\"\n",
    "    class_label: Labels\n",
    "\n",
    "def classify(data: str) -> SinglePrediction:\n",
    "    \"\"\"Perform single-label classification on the input text.\"\"\"\n",
    "    return client.chat.completions.create(\n",
    "        model=\"gpt-3.5-turbo-0613\",\n",
    "        response_model=SinglePrediction,\n",
    "        messages=[\n",
    "            {\n",
    "                \"role\": \"user\",\n",
    "                \"content\": f\"Classify the following text: {data}\",\n",
    "            },\n",
    "        ],\n",
    "    )  # type: ignore\n",
    "\n",
    "prediction = classify(\"Hello there I'm a Nigerian prince and I want to give you money\")\n",
    "assert prediction.class_label == Labels.SPAM\n",
    "print(prediction)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Multi-Label Classification"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "class_labels=[<MultiLabels.TECH_ISSUE: 'tech_issue'>, <MultiLabels.BILLING: 'billing'>]\n"
     ]
    }
   ],
   "source": [
    "from typing import List\n",
    "\n",
    "# Define Enum class for multiple labels\n",
    "class MultiLabels(str, enum.Enum):\n",
    "    TECH_ISSUE = \"tech_issue\"\n",
    "    BILLING = \"billing\"\n",
    "    GENERAL_QUERY = \"general_query\"\n",
    "\n",
    "# Define the multi-class prediction model\n",
    "class MultiClassPrediction(BaseModel):\n",
    "    \"\"\"\n",
    "    Class for a multi-class label prediction.\n",
    "    \"\"\"\n",
    "    class_labels: List[MultiLabels]\n",
    "\n",
    "def multi_classify(data: str) -> MultiClassPrediction:\n",
    "    \"\"\"Perform multi-label classification on the input text.\"\"\"\n",
    "    return client.chat.completions.create(\n",
    "        model=\"gpt-3.5-turbo-0613\",\n",
    "        response_model=MultiClassPrediction,\n",
    "        messages=[\n",
    "            {\n",
    "                \"role\": \"user\",\n",
    "                \"content\": f\"Classify the following support ticket: {data}\",\n",
    "            },\n",
    "        ],\n",
    "    )  # type: ignore\n",
    "\n",
    "# Test multi-label classification\n",
    "ticket = \"My account is locked and I can't access my billing info.\"\n",
    "prediction = multi_classify(ticket)\n",
    "print(prediction)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Self-Critique"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "question='What is the meaning of life?' answer='According to the Devil, the meaning of life is to live a life of sin and debauchery.'\n",
      "1 validation error for QuestionAnswerNoEvil\n",
      "answer\n",
      "  Assertion failed, The statement promotes sin and debauchery, which can be considered objectionable. [type=assertion_error, input_value='According to the Devil, ... of sin and debauchery.', input_type=str]\n",
      "    For further information visit https://errors.pydantic.dev/2.3/v/assertion_error\n"
     ]
    }
   ],
   "source": [
    "from typing_extensions import Annotated\n",
    "from pydantic import BaseModel, BeforeValidator\n",
    "\n",
    "from instructor import llm_validator\n",
    "\n",
    "\n",
    "question = \"What is the meaning of life?\"\n",
    "context = \"The according to the devil the meaning of live is to live a life of sin and debauchery.\"\n",
    "\n",
    "class QuestionAnswer(BaseModel):\n",
    "    question: str\n",
    "    answer: str\n",
    "\n",
    "qa: QuestionAnswer = client.chat.completions.create(\n",
    "    model=\"gpt-3.5-turbo\",\n",
    "    response_model=QuestionAnswer,\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a system that answers questions based on the context. answer exactly what the question asks using the context.\",\n",
    "        },\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": f\"using the context: {context}\\n\\nAnswer the following question: {question}\",\n",
    "        },\n",
    "    ],\n",
    ")\n",
    "print(qa)\n",
    "\n",
    "class QuestionAnswerNoEvil(BaseModel):\n",
    "    question: str\n",
    "    answer: Annotated[\n",
    "        str,\n",
    "        BeforeValidator(\n",
    "            llm_validator(\"don't say objectionable things\", allow_override=True)\n",
    "        ),\n",
    "    ]\n",
    "\n",
    "try:\n",
    "    qa: QuestionAnswerNoEvil = client.chat.completions.create(\n",
    "        model=\"gpt-3.5-turbo\",\n",
    "        response_model=QuestionAnswerNoEvil,\n",
    "        messages=[\n",
    "            {\n",
    "                \"role\": \"system\",\n",
    "                \"content\": \"You are a system that answers questions based on the context. answer exactly what the question asks using the context.\",\n",
    "            },\n",
    "            {\n",
    "                \"role\": \"user\",\n",
    "                \"content\": f\"using the context: {context}\\n\\nAnswer the following question: {question}\",\n",
    "            },\n",
    "        ],\n",
    "    )\n",
    "except Exception as e:\n",
    "    print(e)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Answering Questions with Validated Citations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "question='What did the author do during college?' answer=[Fact(fact='The author, Jason Liu, studied Computational Mathematics and Physics in university.', substring_quote=['Computational Mathematics'])]\n"
     ]
    }
   ],
   "source": [
    "import re\n",
    "from typing import List\n",
    "\n",
    "from pydantic import Field, BaseModel, model_validator, FieldValidationInfo\n",
    "\n",
    "class Fact(BaseModel):\n",
    "    fact: str = Field(...)\n",
    "    substring_quote: List[str] = Field(...)\n",
    "\n",
    "    @model_validator(mode=\"after\")\n",
    "    def validate_sources(self, info: FieldValidationInfo) -> \"Fact\":\n",
    "        text_chunks = info.context.get(\"text_chunk\", None)\n",
    "        spans = list(self.get_spans(text_chunks))\n",
    "        self.substring_quote = [text_chunks[span[0] : span[1]] for span in spans]\n",
    "        return self\n",
    "\n",
    "    def get_spans(self, context):\n",
    "        for quote in self.substring_quote:\n",
    "            yield from self._get_span(quote, context)\n",
    "\n",
    "    def _get_span(self, quote, context):\n",
    "        for match in re.finditer(re.escape(quote), context):\n",
    "            yield match.span()\n",
    "\n",
    "class QuestionAnswer(BaseModel):\n",
    "    question: str = Field(...)\n",
    "    answer: List[Fact] = Field(...)\n",
    "\n",
    "    @model_validator(mode=\"after\")\n",
    "    def validate_sources(self) -> \"QuestionAnswer\":\n",
    "        self.answer = [fact for fact in self.answer if len(fact.substring_quote) > 0]\n",
    "        return self\n",
    "\n",
    "\n",
    "def ask_ai(question: str, context: str) -> QuestionAnswer:\n",
    "    return client.chat.completions.create(\n",
    "        model=\"gpt-3.5-turbo-0613\",\n",
    "        temperature=0.0,\n",
    "        response_model=QuestionAnswer,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": \"You are a world class algorithm to answer questions with correct and exact citations.\"},\n",
    "            {\"role\": \"user\", \"content\": f\"{context}\"},\n",
    "            {\"role\": \"user\", \"content\": f\"Question: {question}\"}\n",
    "        ],\n",
    "        validation_context={\"text_chunk\": context},\n",
    "    )\n",
    "\n",
    "question = \"What did the author do during college?\"\n",
    "context = \"\"\"\n",
    "My name is Jason Liu, and I grew up in Toronto Canada but I was born in China.\n",
    "I went to an arts high school but in university I studied Computational Mathematics and physics.\n",
    "As part of coop I worked at many companies including Stitchfix, Facebook.\n",
    "I also started the Data Science club at the University of Waterloo and I was the president of the club for 2 years.\n",
    "\"\"\"\n",
    "\n",
    "qa = ask_ai(question, context)\n",
    "print(qa)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "python-3.8.10",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5+"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}