Spaces:
Runtime error
Runtime error
File size: 59,913 Bytes
4bdb245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"name\": \"get_article_details\",\n",
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"title\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"authors\": {\n",
" \"type\": \"list[str]\"\n",
" },\n",
" \"short_summary\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"date_published\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"tags\": {\n",
" \"type\": \"list[str]\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Article\"\n",
"}\n"
]
}
],
"source": [
"import json\n",
"import inspect\n",
"from typing import get_type_hints\n",
"\n",
"class Article:\n",
" pass\n",
"\n",
"class Weather:\n",
" pass\n",
"\n",
"class Directions:\n",
" pass\n",
"\n",
"def calculate_mortgage_payment(loan_amount: int, interest_rate: float, loan_term: int) -> float:\n",
" \"\"\"Get the monthly mortgage payment given an interest rate percentage.\"\"\"\n",
" \n",
" # TODO: you must implement this to actually call it later\n",
" pass\n",
"\n",
"def get_article_details(title: str, authors: list[str], short_summary: str, date_published: str, tags: list[str]) -> Article:\n",
" '''Get article details from unstructured article text.\n",
"date_published: formatted as \"MM/DD/YYYY\"'''\n",
" \n",
" # TODO: you must implement this to actually call it later\n",
" pass\n",
"\n",
"def get_weather(zip_code: str) -> Weather:\n",
" \"\"\"Get the current weather given a zip code.\"\"\"\n",
" \n",
" # TODO: you must implement this to actually call it later\n",
" pass\n",
"\n",
"def get_directions(start: str, destination: str) -> Directions:\n",
" \"\"\"Get directions from Google Directions API.\n",
"start: start address as a string including zipcode (if any)\n",
"destination: end address as a string including zipcode (if any)\"\"\"\n",
" \n",
" # TODO: you must implement this to actually call it later\n",
" pass\n",
"\n",
"def get_type_name(t):\n",
" name = str(t)\n",
" if \"list\" in name or \"dict\" in name:\n",
" return name\n",
" else:\n",
" return t.__name__\n",
"\n",
"def serialize_function_to_json(func):\n",
" signature = inspect.signature(func)\n",
" type_hints = get_type_hints(func)\n",
"\n",
" function_info = {\n",
" \"name\": func.__name__,\n",
" \"description\": func.__doc__,\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {}\n",
" },\n",
" \"returns\": type_hints.get('return', 'void').__name__\n",
" }\n",
"\n",
" for name, _ in signature.parameters.items():\n",
" param_type = get_type_name(type_hints.get(name, type(None)))\n",
" function_info[\"parameters\"][\"properties\"][name] = {\"type\": param_type}\n",
"\n",
" return json.dumps(function_info, indent=2)\n",
"\n",
"print(serialize_function_to_json(get_article_details))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import xml.etree.ElementTree as ET\n",
"import re\n",
"\n",
"def extract_function_calls(completion):\n",
" completion = completion.strip()\n",
" pattern = r\"(<multiplefunctions>(.*?)</multiplefunctions>)\"\n",
" match = re.search(pattern, completion, re.DOTALL)\n",
" if not match:\n",
" return None\n",
" \n",
" multiplefn = match.group(1)\n",
" root = ET.fromstring(multiplefn)\n",
" functions = root.findall(\"functioncall\")\n",
" return [json.loads(fn.text) for fn in functions]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"def generate_hermes_prompt(prompt, functions):\n",
" functions = \"\\n\\n\".join([serialize_function_to_json(fn) for fn in functions])\n",
" prompt = f\"\"\"<|im_start|>system\n",
"You are a helpful assistant with access to the following functions:\n",
"\n",
"{functions}\n",
"\n",
"To use these functions respond with:\n",
"<multiplefunctions>\n",
" <functioncall> {{\"name\": \"function_name\", \"arguments\": {{\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}}}} </functioncall>\n",
" <functioncall> {{\"name\": \"function_name\", \"arguments\": {{\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}}}} </functioncall>\n",
" ...\n",
"</multiplefunctions>\n",
"\n",
"Edge cases you must handle:\n",
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
"<|im_start|>user\n",
"{prompt}<|im_end|>\n",
"<|im_start|>assistant\"\"\"\n",
" return prompt"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<|im_start|>system\n",
"You are a helpful assistant with access to the following functions:\n",
"\n",
"{\n",
" \"name\": \"get_weather\",\n",
" \"description\": \"Get the current weather given a zip code.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"zip_code\": {\n",
" \"type\": \"str\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Weather\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"calculate_mortgage_payment\",\n",
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"loan_amount\": {\n",
" \"type\": \"int\"\n",
" },\n",
" \"interest_rate\": {\n",
" \"type\": \"float\"\n",
" },\n",
" \"loan_term\": {\n",
" \"type\": \"int\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"float\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"get_article_details\",\n",
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"title\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"authors\": {\n",
" \"type\": \"list[str]\"\n",
" },\n",
" \"short_summary\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"date_published\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"tags\": {\n",
" \"type\": \"list[str]\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Article\"\n",
"}\n",
"\n",
"To use these functions respond with:\n",
"<multiplefunctions>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" ...\n",
"</multiplefunctions>\n",
"\n",
"Edge cases you must handle:\n",
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
"<|im_start|>user\n",
"What's the weather in 10001?<|im_end|>\n",
"<|im_start|>assistant\n",
"<|im_start|>system\n",
"You are a helpful assistant with access to the following functions:\n",
"\n",
"{\n",
" \"name\": \"get_weather\",\n",
" \"description\": \"Get the current weather given a zip code.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"zip_code\": {\n",
" \"type\": \"str\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Weather\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"calculate_mortgage_payment\",\n",
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"loan_amount\": {\n",
" \"type\": \"int\"\n",
" },\n",
" \"interest_rate\": {\n",
" \"type\": \"float\"\n",
" },\n",
" \"loan_term\": {\n",
" \"type\": \"int\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"float\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"get_article_details\",\n",
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"title\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"authors\": {\n",
" \"type\": \"list[str]\"\n",
" },\n",
" \"short_summary\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"date_published\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"tags\": {\n",
" \"type\": \"list[str]\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Article\"\n",
"}\n",
"\n",
"To use these functions respond with:\n",
"<multiplefunctions>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" ...\n",
"</multiplefunctions>\n",
"\n",
"Edge cases you must handle:\n",
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
"<|im_start|>user\n",
"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.<|im_end|>\n",
"<|im_start|>assistant\n",
"<|im_start|>system\n",
"You are a helpful assistant with access to the following functions:\n",
"\n",
"{\n",
" \"name\": \"get_weather\",\n",
" \"description\": \"Get the current weather given a zip code.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"zip_code\": {\n",
" \"type\": \"str\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Weather\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"calculate_mortgage_payment\",\n",
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"loan_amount\": {\n",
" \"type\": \"int\"\n",
" },\n",
" \"interest_rate\": {\n",
" \"type\": \"float\"\n",
" },\n",
" \"loan_term\": {\n",
" \"type\": \"int\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"float\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"get_article_details\",\n",
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"title\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"authors\": {\n",
" \"type\": \"list[str]\"\n",
" },\n",
" \"short_summary\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"date_published\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"tags\": {\n",
" \"type\": \"list[str]\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Article\"\n",
"}\n",
"\n",
"To use these functions respond with:\n",
"<multiplefunctions>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" ...\n",
"</multiplefunctions>\n",
"\n",
"Edge cases you must handle:\n",
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
"<|im_start|>user\n",
"What's the current exchange rate for USD to EUR?<|im_end|>\n",
"<|im_start|>assistant\n"
]
}
],
"source": [
"prompts = [\n",
" \"What's the weather in 10001?\",\n",
" \"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.\",\n",
" \"What's the current exchange rate for USD to EUR?\"\n",
"]\n",
"functions = [get_weather, calculate_mortgage_payment, get_article_details]\n",
"\n",
"for prompt in prompts:\n",
" print(generate_hermes_prompt(prompt, functions))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no\n",
"ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes\n",
"ggml_init_cublas: found 1 CUDA devices:\n",
" Device 0: NVIDIA GeForce RTX 2060, compute capability 7.5\n",
"llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ../../models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf (version GGUF V3 (latest))\n",
"llama_model_loader: - tensor 0: token_embd.weight q4_K [ 4096, 32002, 1, 1 ]\n",
"llama_model_loader: - tensor 1: blk.0.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 2: blk.0.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 3: blk.0.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 4: blk.0.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 5: blk.0.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 6: blk.0.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 7: blk.0.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 10: blk.1.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 11: blk.1.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 12: blk.1.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 13: blk.1.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 14: blk.1.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 15: blk.1.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 16: blk.1.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 19: blk.2.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 20: blk.2.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 21: blk.2.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 22: blk.2.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 23: blk.2.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 24: blk.2.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 25: blk.2.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 28: blk.3.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 29: blk.3.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 30: blk.3.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 31: blk.3.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 33: blk.3.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 34: blk.3.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 37: blk.4.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 38: blk.4.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 39: blk.4.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 40: blk.4.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 41: blk.4.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 42: blk.4.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 43: blk.4.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 46: blk.5.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 47: blk.5.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 48: blk.5.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 49: blk.5.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 50: blk.5.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 51: blk.5.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 52: blk.5.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 55: blk.6.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 56: blk.6.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 57: blk.6.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 58: blk.6.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 59: blk.6.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 60: blk.6.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 61: blk.6.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 64: blk.7.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 65: blk.7.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 66: blk.7.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 67: blk.7.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 68: blk.7.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 69: blk.7.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 70: blk.7.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 73: blk.8.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 74: blk.8.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 75: blk.8.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 76: blk.8.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 77: blk.8.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 78: blk.8.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 79: blk.8.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 82: blk.9.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 83: blk.9.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 84: blk.9.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 85: blk.9.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 86: blk.9.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 87: blk.9.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 88: blk.9.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 91: blk.10.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 92: blk.10.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 93: blk.10.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 94: blk.10.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 95: blk.10.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 96: blk.10.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 97: blk.10.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 100: blk.11.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 101: blk.11.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 102: blk.11.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 103: blk.11.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 104: blk.11.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 105: blk.11.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 106: blk.11.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 109: blk.12.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 110: blk.12.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 111: blk.12.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 112: blk.12.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 113: blk.12.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 114: blk.12.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 115: blk.12.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 118: blk.13.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 119: blk.13.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 120: blk.13.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 121: blk.13.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 122: blk.13.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 123: blk.13.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 124: blk.13.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 127: blk.14.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 128: blk.14.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 129: blk.14.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 130: blk.14.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 131: blk.14.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 132: blk.14.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 133: blk.14.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 136: blk.15.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 137: blk.15.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 138: blk.15.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 139: blk.15.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 140: blk.15.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 141: blk.15.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 142: blk.15.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 145: blk.16.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 146: blk.16.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 147: blk.16.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 148: blk.16.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 149: blk.16.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 150: blk.16.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 151: blk.16.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 154: blk.17.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 155: blk.17.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 156: blk.17.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 157: blk.17.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 158: blk.17.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 159: blk.17.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 160: blk.17.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 163: blk.18.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 164: blk.18.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 165: blk.18.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 166: blk.18.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 167: blk.18.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 168: blk.18.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 169: blk.18.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 172: blk.19.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 173: blk.19.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 174: blk.19.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 175: blk.19.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 176: blk.19.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 177: blk.19.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 178: blk.19.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 181: blk.20.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 182: blk.20.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 183: blk.20.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 184: blk.20.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 185: blk.20.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 186: blk.20.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 187: blk.20.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 190: blk.21.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 191: blk.21.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 192: blk.21.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 193: blk.21.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 194: blk.21.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 195: blk.21.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 196: blk.21.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 199: blk.22.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 200: blk.22.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 201: blk.22.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 202: blk.22.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 203: blk.22.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 204: blk.22.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 205: blk.22.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 208: blk.23.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 209: blk.23.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 210: blk.23.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 211: blk.23.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 212: blk.23.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 213: blk.23.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 214: blk.23.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 217: blk.24.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 218: blk.24.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 219: blk.24.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 220: blk.24.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 221: blk.24.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 222: blk.24.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 223: blk.24.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 226: blk.25.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 227: blk.25.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 228: blk.25.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 229: blk.25.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 230: blk.25.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 231: blk.25.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 232: blk.25.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 235: blk.26.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 236: blk.26.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 237: blk.26.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 238: blk.26.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 239: blk.26.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 240: blk.26.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 241: blk.26.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 244: blk.27.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 245: blk.27.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 246: blk.27.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 247: blk.27.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 248: blk.27.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 249: blk.27.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 250: blk.27.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 253: blk.28.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 254: blk.28.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 255: blk.28.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 256: blk.28.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 257: blk.28.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 258: blk.28.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 259: blk.28.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 262: blk.29.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 263: blk.29.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 264: blk.29.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 265: blk.29.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 266: blk.29.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 267: blk.29.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 268: blk.29.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 271: blk.30.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 272: blk.30.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 273: blk.30.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 274: blk.30.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 275: blk.30.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 276: blk.30.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 277: blk.30.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 280: blk.31.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 281: blk.31.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 282: blk.31.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 283: blk.31.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 284: blk.31.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 285: blk.31.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 286: blk.31.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 289: output_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 290: output.weight q6_K [ 4096, 32002, 1, 1 ]\n",
"llama_model_loader: - kv 0: general.architecture str = llama\n",
"llama_model_loader: - kv 1: general.name str = teknium_openhermes-2.5-mistral-7b\n",
"llama_model_loader: - kv 2: llama.context_length u32 = 32768\n",
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336\n",
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8\n",
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010\n",
"llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000\n",
"llama_model_loader: - kv 11: general.file_type u32 = 15\n",
"llama_model_loader: - kv 12: tokenizer.ggml.model str = llama\n",
"llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32002] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
"llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32002] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
"llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32002] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
"llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1\n",
"llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 32000\n",
"llama_model_loader: - kv 18: tokenizer.ggml.padding_token_id u32 = 0\n",
"llama_model_loader: - kv 19: general.quantization_version u32 = 2\n",
"llama_model_loader: - type f32: 65 tensors\n",
"llama_model_loader: - type q4_K: 193 tensors\n",
"llama_model_loader: - type q6_K: 33 tensors\n",
"llm_load_vocab: special tokens definition check successful ( 261/32002 ).\n",
"llm_load_print_meta: format = GGUF V3 (latest)\n",
"llm_load_print_meta: arch = llama\n",
"llm_load_print_meta: vocab type = SPM\n",
"llm_load_print_meta: n_vocab = 32002\n",
"llm_load_print_meta: n_merges = 0\n",
"llm_load_print_meta: n_ctx_train = 32768\n",
"llm_load_print_meta: n_embd = 4096\n",
"llm_load_print_meta: n_head = 32\n",
"llm_load_print_meta: n_head_kv = 8\n",
"llm_load_print_meta: n_layer = 32\n",
"llm_load_print_meta: n_rot = 128\n",
"llm_load_print_meta: n_gqa = 4\n",
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
"llm_load_print_meta: f_norm_rms_eps = 1.0e-05\n",
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
"llm_load_print_meta: n_ff = 14336\n",
"llm_load_print_meta: rope scaling = linear\n",
"llm_load_print_meta: freq_base_train = 10000.0\n",
"llm_load_print_meta: freq_scale_train = 1\n",
"llm_load_print_meta: n_yarn_orig_ctx = 32768\n",
"llm_load_print_meta: rope_finetuned = unknown\n",
"llm_load_print_meta: model type = 7B\n",
"llm_load_print_meta: model ftype = mostly Q4_K - Medium\n",
"llm_load_print_meta: model params = 7.24 B\n",
"llm_load_print_meta: model size = 4.07 GiB (4.83 BPW) \n",
"llm_load_print_meta: general.name = teknium_openhermes-2.5-mistral-7b\n",
"llm_load_print_meta: BOS token = 1 '<s>'\n",
"llm_load_print_meta: EOS token = 32000 '<|im_end|>'\n",
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
"llm_load_print_meta: PAD token = 0 '<unk>'\n",
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
"llm_load_tensors: ggml ctx size = 0.11 MiB\n",
"llm_load_tensors: using CUDA for GPU acceleration\n",
"llm_load_tensors: mem required = 70.42 MiB\n",
"llm_load_tensors: offloading 32 repeating layers to GPU\n",
"llm_load_tensors: offloading non-repeating layers to GPU\n",
"llm_load_tensors: offloaded 35/35 layers to GPU\n",
"llm_load_tensors: VRAM used: 4095.06 MiB\n",
"...............................................................................................\n",
"llama_new_context_with_model: n_ctx = 2048\n",
"llama_new_context_with_model: freq_base = 10000.0\n",
"llama_new_context_with_model: freq_scale = 1\n",
"llama_kv_cache_init: offloading v cache to GPU\n",
"llama_kv_cache_init: offloading k cache to GPU\n",
"llama_kv_cache_init: VRAM kv self = 256.00 MiB\n",
"llama_new_context_with_model: kv self size = 256.00 MiB\n",
"llama_build_graph: non-view tensors processed: 740/740\n",
"llama_new_context_with_model: compute buffer total size = 159.07 MiB\n",
"llama_new_context_with_model: VRAM scratch buffer: 156.00 MiB\n",
"llama_new_context_with_model: total VRAM used: 4507.07 MiB (model: 4095.06 MiB, context: 412.00 MiB)\n"
]
}
],
"source": [
"import llama_cpp\n",
"\n",
"llama = llama_cpp.Llama(model_path=\"../../models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf\", n_gpu_layers=-1, n_ctx=2048, verbose=False)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'name': 'get_weather', 'arguments': {'zip_code': '10001'}}]\n",
"====================================================================================================\n",
"[{'name': 'calculate_mortgage_payment', 'arguments': {'loan_amount': 200000, 'interest_rate': 0.04, 'loan_term': 30}}]\n",
"====================================================================================================\n",
"Unfortunately, I do not have a built-in function to check currency exchange rates. However, you can use third-party APIs or websites like Google Finance or XE to get this information.\n",
"====================================================================================================\n"
]
}
],
"source": [
"prompts = [\n",
" \"What's the weather in 10001?\",\n",
" \"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.\",\n",
" \"What's the current exchange rate for USD to EUR?\"\n",
"]\n",
"functions = [get_weather, calculate_mortgage_payment, get_article_details]\n",
"\n",
"for prompt in prompts:\n",
" prompt = generate_hermes_prompt(prompt, functions)\n",
" completion = llama.create_completion(prompt, max_tokens=-1)[\"choices\"][0][\"text\"]\n",
" function_calls = extract_function_calls(completion)\n",
" if function_calls:\n",
" print(function_calls)\n",
" else:\n",
" print(completion.strip())\n",
" print(\"=\"*100)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"get_weather\n",
"{'zip_code': '05751'}\n",
"====================================================================================================\n",
"get_weather\n",
"{'zip_code': '05751'}\n",
"get_weather\n",
"{'zip_code': '07030'}\n",
"calculate_mortgage_payment\n",
"{'loan_amount': 250000, 'interest_rate': 4.18, 'loan_term': 30}\n",
"====================================================================================================\n",
"I don't have a function to get exchange rates, but I can provide some resources where you can find this information. You can check websites like Google Finance, XE.com, or Yahoo Finance for up-to-date currency exchange rates.\n",
"====================================================================================================\n"
]
}
],
"source": [
"prompts = [\n",
" \"What's the weather in 05751?\",\n",
" \"I'm planning a trip to Killington, Vermont (05751) from Hoboken, NJ (07030). Can you get me weather for both locations and directions?\",\n",
" \"What's the current exchange rate for USD to EUR?\"\n",
"]\n",
"\n",
"for prompt in prompts:\n",
" completion = llama.create_completion(generate_hermes_prompt(prompt, functions), max_tokens=-1)[\"choices\"][0][\"text\"]\n",
" function_calls = extract_function_calls(completion)\n",
"\n",
" if function_calls:\n",
" for function in function_calls:\n",
" print(function[\"name\"])\n",
" print(function[\"arguments\"])\n",
" else:\n",
" print(completion.strip())\n",
"\n",
" print(\"=\"*100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5+"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|