Spaces:
Runtime error
Runtime error
File size: 82,611 Bytes
4bdb245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 |
from __future__ import annotations
import os
import sys
import uuid
import time
import json
import ctypes
import fnmatch
import multiprocessing
from typing import (
List,
Optional,
Union,
Generator,
Sequence,
Iterator,
Deque,
Callable,
Dict,
)
from collections import deque
from pathlib import Path
from llama_cpp.llama_types import List
from .llama_types import *
from .llama_grammar import LlamaGrammar
from .llama_cache import (
BaseLlamaCache,
LlamaCache, # type: ignore
LlamaDiskCache, # type: ignore
LlamaRAMCache, # type: ignore
)
from .llama_tokenizer import BaseLlamaTokenizer, LlamaTokenizer
import llama_cpp.llama_cpp as llama_cpp
import llama_cpp.llama_chat_format as llama_chat_format
from llama_cpp.llama_speculative import LlamaDraftModel
import numpy as np
import numpy.typing as npt
from ._internals import (
_LlamaModel, # type: ignore
_LlamaContext, # type: ignore
_LlamaBatch, # type: ignore
_LlamaTokenDataArray, # type: ignore
_LlamaSamplingParams, # type: ignore
_LlamaSamplingContext, # type: ignore
_normalize_embedding, # type: ignore
)
from ._logger import set_verbose
from ._utils import suppress_stdout_stderr
class Llama:
"""High-level Python wrapper for a llama.cpp model."""
__backend_initialized = False
def __init__(
self,
model_path: str,
*,
# Model Params
n_gpu_layers: int = 0,
split_mode: int = llama_cpp.LLAMA_SPLIT_MODE_LAYER,
main_gpu: int = 0,
tensor_split: Optional[List[float]] = None,
vocab_only: bool = False,
use_mmap: bool = True,
use_mlock: bool = False,
kv_overrides: Optional[Dict[str, Union[bool, int, float, str]]] = None,
# Context Params
seed: int = llama_cpp.LLAMA_DEFAULT_SEED,
n_ctx: int = 512,
n_batch: int = 512,
n_threads: Optional[int] = None,
n_threads_batch: Optional[int] = None,
rope_scaling_type: Optional[int] = llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
pooling_type: int = llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
rope_freq_base: float = 0.0,
rope_freq_scale: float = 0.0,
yarn_ext_factor: float = -1.0,
yarn_attn_factor: float = 1.0,
yarn_beta_fast: float = 32.0,
yarn_beta_slow: float = 1.0,
yarn_orig_ctx: int = 0,
logits_all: bool = False,
embedding: bool = False,
offload_kqv: bool = True,
flash_attn: bool = False,
# Sampling Params
last_n_tokens_size: int = 64,
# LoRA Params
lora_base: Optional[str] = None,
lora_scale: float = 1.0,
lora_path: Optional[str] = None,
# Backend Params
numa: Union[bool, int] = False,
# Chat Format Params
chat_format: Optional[str] = None,
chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None,
# Speculative Decoding
draft_model: Optional[LlamaDraftModel] = None,
# Tokenizer Override
tokenizer: Optional[BaseLlamaTokenizer] = None,
# KV cache quantization
type_k: Optional[int] = None,
type_v: Optional[int] = None,
# Misc
verbose: bool = True,
# Extra Params
**kwargs, # type: ignore
):
"""Load a llama.cpp model from `model_path`.
Examples:
Basic usage
>>> import llama_cpp
>>> model = llama_cpp.Llama(
... model_path="path/to/model",
... )
>>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"])
the lazy dog
Loading a chat model
>>> import llama_cpp
>>> model = llama_cpp.Llama(
... model_path="path/to/model",
... chat_format="llama-2",
... )
>>> print(model.create_chat_completion(
... messages=[{
... "role": "user",
... "content": "what is the meaning of life?"
... }]
... ))
Args:
model_path: Path to the model.
n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.
split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.
main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_LAYER: ignored
tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split.
vocab_only: Only load the vocabulary no weights.
use_mmap: Use mmap if possible.
use_mlock: Force the system to keep the model in RAM.
kv_overrides: Key-value overrides for the model.
seed: RNG seed, -1 for random
n_ctx: Text context, 0 = from model
n_batch: Prompt processing maximum batch size
n_threads: Number of threads to use for generation
n_threads_batch: Number of threads to use for batch processing
rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054
pooling_type: Pooling type, from `enum llama_pooling_type`.
rope_freq_base: RoPE base frequency, 0 = from model
rope_freq_scale: RoPE frequency scaling factor, 0 = from model
yarn_ext_factor: YaRN extrapolation mix factor, negative = from model
yarn_attn_factor: YaRN magnitude scaling factor
yarn_beta_fast: YaRN low correction dim
yarn_beta_slow: YaRN high correction dim
yarn_orig_ctx: YaRN original context size
logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
embedding: Embedding mode only.
offload_kqv: Offload K, Q, V to GPU.
flash_attn: Use flash attention.
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
lora_path: Path to a LoRA file to apply to the model.
numa: numa policy
chat_format: String specifying the chat format to use when calling create_chat_completion.
chat_handler: Optional chat handler to use when calling create_chat_completion.
draft_model: Optional draft model to use for speculative decoding.
tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp.
verbose: Print verbose output to stderr.
type_k: KV cache data type for K (default: f16)
type_v: KV cache data type for V (default: f16)
Raises:
ValueError: If the model path does not exist.
Returns:
A Llama instance.
"""
self.verbose = verbose
set_verbose(verbose)
if not Llama.__backend_initialized:
with suppress_stdout_stderr(disable=verbose):
llama_cpp.llama_backend_init()
Llama.__backend_initialized = True
if isinstance(numa, bool):
self.numa = (
llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE
if numa
else llama_cpp.GGML_NUMA_STRATEGY_DISABLED
)
else:
self.numa = numa
if self.numa != llama_cpp.GGML_NUMA_STRATEGY_DISABLED:
with suppress_stdout_stderr(disable=verbose):
llama_cpp.llama_numa_init(self.numa)
self.model_path = model_path
# Model Params
self.model_params = llama_cpp.llama_model_default_params()
self.model_params.n_gpu_layers = (
0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers
) # 0x7FFFFFFF is INT32 max, will be auto set to all layers
self.model_params.split_mode = split_mode
self.model_params.main_gpu = main_gpu
self.tensor_split = tensor_split
self._c_tensor_split = None
if self.tensor_split is not None:
if len(self.tensor_split) > llama_cpp.LLAMA_MAX_DEVICES:
raise ValueError(
f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}"
)
# Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES
self._c_tensor_split = FloatArray(
*tensor_split # type: ignore
) # keep a reference to the array so it is not gc'd
self.model_params.tensor_split = self._c_tensor_split
self.model_params.vocab_only = vocab_only
self.model_params.use_mmap = use_mmap if lora_path is None else False
self.model_params.use_mlock = use_mlock
# kv_overrides is the original python dict
self.kv_overrides = kv_overrides
if kv_overrides is not None:
# _kv_overrides_array is a ctypes.Array of llama_model_kv_override Structs
kvo_array_len = len(kv_overrides) + 1 # for sentinel element
self._kv_overrides_array = (
llama_cpp.llama_model_kv_override * kvo_array_len
)()
for i, (k, v) in enumerate(kv_overrides.items()):
self._kv_overrides_array[i].key = k.encode("utf-8")
if isinstance(v, bool):
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOL
self._kv_overrides_array[i].value.bool_value = v
elif isinstance(v, int):
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INT
self._kv_overrides_array[i].value.int_value = v
elif isinstance(v, float):
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOAT
self._kv_overrides_array[i].value.float_value = v
elif isinstance(v, str): # type: ignore
v_bytes = v.encode("utf-8")
if len(v_bytes) > 128: # TODO: Make this a constant
raise ValueError(f"Value for {k} is too long: {v}")
v_bytes = v_bytes.ljust(128, b"\0")
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_STR
# copy min(v_bytes, 128) to str_value
ctypes.memmove(
self._kv_overrides_array[i].value.str_value,
v_bytes,
min(len(v_bytes), 128),
)
else:
raise ValueError(f"Unknown value type for {k}: {v}")
self._kv_overrides_array[-1].key = (
b"\0" # ensure sentinel element is zeroed
)
self.model_params.kv_overrides = self._kv_overrides_array
self.n_batch = min(n_ctx, n_batch) # ???
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
self.n_threads_batch = n_threads_batch or multiprocessing.cpu_count()
# Context Params
self.context_params = llama_cpp.llama_context_default_params()
self.context_params.seed = seed
self.context_params.n_ctx = n_ctx
self.context_params.n_batch = self.n_batch
self.context_params.n_threads = self.n_threads
self.context_params.n_threads_batch = self.n_threads_batch
self.context_params.rope_scaling_type = (
rope_scaling_type
if rope_scaling_type is not None
else llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED
)
self.context_params.pooling_type = pooling_type
self.context_params.rope_freq_base = (
rope_freq_base if rope_freq_base != 0.0 else 0
)
self.context_params.rope_freq_scale = (
rope_freq_scale if rope_freq_scale != 0.0 else 0
)
self.context_params.yarn_ext_factor = (
yarn_ext_factor if yarn_ext_factor != 0.0 else 0
)
self.context_params.yarn_attn_factor = (
yarn_attn_factor if yarn_attn_factor != 0.0 else 0
)
self.context_params.yarn_beta_fast = (
yarn_beta_fast if yarn_beta_fast != 0.0 else 0
)
self.context_params.yarn_beta_slow = (
yarn_beta_slow if yarn_beta_slow != 0.0 else 0
)
self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0
self.context_params.logits_all = (
logits_all if draft_model is None else True
) # Must be set to True for speculative decoding
self.context_params.embeddings = embedding # TODO: Rename to embeddings
self.context_params.offload_kqv = offload_kqv
self.context_params.flash_attn = flash_attn
# KV cache quantization
if type_k is not None:
self.context_params.type_k = type_k
if type_v is not None:
self.context_params.type_v = type_v
# Sampling Params
self.last_n_tokens_size = last_n_tokens_size
self.cache: Optional[BaseLlamaCache] = None
self.lora_base = lora_base
self.lora_scale = lora_scale
self.lora_path = lora_path
if not os.path.exists(model_path):
raise ValueError(f"Model path does not exist: {model_path}")
self._model = _LlamaModel(
path_model=self.model_path, params=self.model_params, verbose=self.verbose
)
# Override tokenizer
self.tokenizer_ = tokenizer or LlamaTokenizer(self)
# Set the default value for the context and correct the batch
if n_ctx == 0:
n_ctx = self._model.n_ctx_train()
self.n_batch = min(n_ctx, n_batch)
self.context_params.n_ctx = self._model.n_ctx_train()
self.context_params.n_batch = self.n_batch
self._ctx = _LlamaContext(
model=self._model,
params=self.context_params,
verbose=self.verbose,
)
self._batch = _LlamaBatch(
n_tokens=self.n_batch,
embd=0,
n_seq_max=self.context_params.n_ctx,
verbose=self.verbose,
)
if self.lora_path:
if self._model.apply_lora_from_file(
self.lora_path,
self.lora_scale,
self.lora_base,
self.n_threads,
):
raise RuntimeError(
f"Failed to apply LoRA from lora path: {self.lora_path} to base path: {self.lora_base}"
)
if self.verbose:
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)
self.chat_format = chat_format
self.chat_handler = chat_handler
self.draft_model = draft_model
self._n_vocab = self.n_vocab()
self._n_ctx = self.n_ctx()
self._token_nl = self.token_nl()
self._token_eos = self.token_eos()
self._candidates = _LlamaTokenDataArray(n_vocab=self._n_vocab)
self.n_tokens = 0
self.input_ids: npt.NDArray[np.intc] = np.ndarray((n_ctx,), dtype=np.intc)
self.scores: npt.NDArray[np.single] = np.ndarray(
(n_ctx, self._n_vocab), dtype=np.single
)
self._mirostat_mu = ctypes.c_float(
2.0 * 5.0
) # TODO: Move this to sampling context
try:
self.metadata = self._model.metadata()
except Exception as e:
self.metadata = {}
if self.verbose:
print(f"Failed to load metadata: {e}", file=sys.stderr)
if self.verbose:
print(f"Model metadata: {self.metadata}", file=sys.stderr)
if (
self.chat_format is None
and self.chat_handler is None
and "tokenizer.chat_template" in self.metadata
):
chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata(
self.metadata
)
if chat_format is not None:
self.chat_format = chat_format
if self.verbose:
print(f"Guessed chat format: {chat_format}", file=sys.stderr)
else:
template = self.metadata["tokenizer.chat_template"]
try:
eos_token_id = int(self.metadata["tokenizer.ggml.eos_token_id"])
except:
eos_token_id = self.token_eos()
try:
bos_token_id = int(self.metadata["tokenizer.ggml.bos_token_id"])
except:
bos_token_id = self.token_bos()
eos_token = self._model.token_get_text(eos_token_id)
bos_token = self._model.token_get_text(bos_token_id)
if self.verbose:
print(f"Using gguf chat template: {template}", file=sys.stderr)
print(f"Using chat eos_token: {eos_token}", file=sys.stderr)
print(f"Using chat bos_token: {bos_token}", file=sys.stderr)
self.chat_handler = llama_chat_format.Jinja2ChatFormatter(
template=template,
eos_token=eos_token,
bos_token=bos_token,
stop_token_ids=[eos_token_id],
).to_chat_handler()
if self.chat_format is None and self.chat_handler is None:
self.chat_format = "llama-2"
if self.verbose:
print(f"Using fallback chat format: {chat_format}", file=sys.stderr)
@property
def ctx(self) -> llama_cpp.llama_context_p:
assert self._ctx.ctx is not None
return self._ctx.ctx
@property
def model(self) -> llama_cpp.llama_model_p:
assert self._model.model is not None
return self._model.model
@property
def _input_ids(self) -> npt.NDArray[np.intc]:
return self.input_ids[: self.n_tokens]
@property
def _scores(self) -> npt.NDArray[np.single]:
return self.scores[: self.n_tokens, :]
@property
def eval_tokens(self) -> Deque[int]:
return deque(self.input_ids[: self.n_tokens].tolist(), maxlen=self._n_ctx)
@property
def eval_logits(self) -> Deque[List[float]]:
return deque(
self.scores[: self.n_tokens, :].tolist(),
maxlen=self._n_ctx if self.context_params.logits_all else 1,
)
def tokenize(
self, text: bytes, add_bos: bool = True, special: bool = False
) -> List[int]:
"""Tokenize a string.
Args:
text: The utf-8 encoded string to tokenize.
Raises:
RuntimeError: If the tokenization failed.
Returns:
A list of tokens.
"""
return self.tokenizer_.tokenize(text, add_bos, special)
def detokenize(
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
) -> bytes:
"""Detokenize a list of tokens.
Args:
tokens: The list of tokens to detokenize.
prev_tokens: The list of previous tokens. Offset mapping will be performed if provided
Returns:
The detokenized string.
"""
return self.tokenizer_.detokenize(tokens, prev_tokens=prev_tokens)
def set_cache(self, cache: Optional[BaseLlamaCache]):
"""Set the cache.
Args:
cache: The cache to set.
"""
self.cache = cache
def set_seed(self, seed: int):
"""Set the random seed.
Args:
seed: The random seed.
"""
assert self._ctx.ctx is not None
llama_cpp.llama_set_rng_seed(self._ctx.ctx, seed)
def reset(self):
"""Reset the model state."""
self.n_tokens = 0
def eval(self, tokens: Sequence[int]):
"""Evaluate a list of tokens.
Args:
tokens: The list of tokens to evaluate.
"""
assert self._ctx.ctx is not None
assert self._batch.batch is not None
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
for i in range(0, len(tokens), self.n_batch):
batch = tokens[i : min(len(tokens), i + self.n_batch)]
n_past = self.n_tokens
n_tokens = len(batch)
self._batch.set_batch(
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
)
self._ctx.decode(self._batch)
# Save tokens
self.input_ids[n_past : n_past + n_tokens] = batch
# Save logits
if self.context_params.logits_all:
rows = n_tokens
cols = self._n_vocab
logits = self._ctx.get_logits()[: rows * cols]
self.scores[n_past : n_past + n_tokens, :].reshape(-1)[: :] = logits
else:
rows = 1
cols = self._n_vocab
logits = self._ctx.get_logits()[: rows * cols]
self.scores[n_past + n_tokens - 1, :].reshape(-1)[: :] = logits
# Update n_tokens
self.n_tokens += n_tokens
def sample(
self,
top_k: int = 40,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
temp: float = 0.80,
repeat_penalty: float = 1.1,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_eta: float = 0.1,
mirostat_tau: float = 5.0,
penalize_nl: bool = True,
logits_processor: Optional[LogitsProcessorList] = None,
grammar: Optional[LlamaGrammar] = None,
idx: Optional[int] = None,
):
"""Sample a token from the model.
Args:
top_k: The top-k sampling parameter.
top_p: The top-p sampling parameter.
temp: The temperature parameter.
repeat_penalty: The repeat penalty parameter.
Returns:
The sampled token.
"""
assert self._ctx is not None
assert self.n_tokens > 0
if idx is None:
logits: npt.NDArray[np.single] = self._scores[-1, :]
else:
logits = self._scores[idx, :]
if logits_processor is not None:
logits[:] = (
logits_processor(self._input_ids, logits)
if idx is None
else logits_processor(self._input_ids[: idx + 1], logits)
)
sampling_params = _LlamaSamplingParams(
top_k=top_k,
top_p=top_p,
min_p=min_p,
tfs_z=tfs_z,
typical_p=typical_p,
temp=temp,
penalty_last_n=self.last_n_tokens_size,
penalty_repeat=repeat_penalty,
penalty_freq=frequency_penalty,
penalty_present=presence_penalty,
mirostat=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
penalize_nl=penalize_nl,
)
sampling_context = _LlamaSamplingContext(
params=sampling_params,
grammar=grammar,
)
sampling_context.prev = list(self.eval_tokens)
id = sampling_context.sample(ctx_main=self._ctx, logits_array=logits)
sampling_context.accept(
ctx_main=self._ctx,
id=id,
apply_grammar=grammar is not None,
)
return id
def generate(
self,
tokens: Sequence[int],
top_k: int = 40,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
temp: float = 0.80,
repeat_penalty: float = 1.1,
reset: bool = True,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
penalize_nl: bool = True,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
grammar: Optional[LlamaGrammar] = None,
) -> Generator[int, Optional[Sequence[int]], None]:
"""Create a generator of tokens from a prompt.
Examples:
>>> llama = Llama("models/ggml-7b.bin")
>>> tokens = llama.tokenize(b"Hello, world!")
>>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.1):
... print(llama.detokenize([token]))
Args:
tokens: The prompt tokens.
top_k: The top-k sampling parameter.
top_p: The top-p sampling parameter.
temp: The temperature parameter.
repeat_penalty: The repeat penalty parameter.
reset: Whether to reset the model state.
Yields:
The generated tokens.
"""
# Reset mirostat sampling
self._mirostat_mu = ctypes.c_float(2.0 * mirostat_tau)
# Check for kv cache prefix match
if reset and self.n_tokens > 0:
longest_prefix = 0
for a, b in zip(self._input_ids, tokens[:-1]):
if a == b:
longest_prefix += 1
else:
break
if longest_prefix > 0:
if self.verbose:
print("Llama.generate: prefix-match hit", file=sys.stderr)
reset = False
tokens = tokens[longest_prefix:]
self.n_tokens = longest_prefix
# Reset the model state
if reset:
self.reset()
# Reset the grammar
if grammar is not None:
grammar.reset()
sample_idx = self.n_tokens + len(tokens) - 1
tokens = list(tokens)
# Eval and sample
while True:
self.eval(tokens)
while sample_idx < self.n_tokens:
token = self.sample(
top_k=top_k,
top_p=top_p,
min_p=min_p,
typical_p=typical_p,
temp=temp,
repeat_penalty=repeat_penalty,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
logits_processor=logits_processor,
grammar=grammar,
penalize_nl=penalize_nl,
idx=sample_idx,
)
sample_idx += 1
if stopping_criteria is not None and stopping_criteria(
self._input_ids, self._scores[-1, :]
):
return
tokens_or_none = yield token
tokens.clear()
tokens.append(token)
if tokens_or_none is not None:
tokens.extend(tokens_or_none)
if sample_idx < self.n_tokens and token != self._input_ids[sample_idx]:
self.n_tokens = sample_idx
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
break
if self.draft_model is not None:
self.input_ids[self.n_tokens : self.n_tokens + len(tokens)] = tokens
draft_tokens = self.draft_model(
self.input_ids[: self.n_tokens + len(tokens)]
)
tokens.extend(
draft_tokens.astype(int)[
: self._n_ctx - self.n_tokens - len(tokens)
]
)
def create_embedding(
self, input: Union[str, List[str]], model: Optional[str] = None
) -> CreateEmbeddingResponse:
"""Embed a string.
Args:
input: The utf-8 encoded string to embed.
Returns:
An embedding object.
"""
assert self._model.model is not None
model_name: str = model if model is not None else self.model_path
input = input if isinstance(input, list) else [input]
# get numeric embeddings
embeds: Union[List[List[float]], List[List[List[float]]]]
total_tokens: int
embeds, total_tokens = self.embed(input, return_count=True) # type: ignore
# convert to CreateEmbeddingResponse
data: List[Embedding] = [
{
"object": "embedding",
"embedding": emb,
"index": idx,
}
for idx, emb in enumerate(embeds)
]
return {
"object": "list",
"data": data,
"model": model_name,
"usage": {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
},
}
def embed(
self,
input: Union[str, List[str]],
normalize: bool = False,
truncate: bool = True,
return_count: bool = False,
):
"""Embed a string.
Args:
input: The utf-8 encoded string to embed.
Returns:
A list of embeddings
"""
assert self._ctx.ctx is not None
n_embd = self.n_embd()
n_batch = self.n_batch
# get pooling information
pooling_type = self.pooling_type()
logits_all = pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE
if self.context_params.embeddings == False:
raise RuntimeError(
"Llama model must be created with embedding=True to call this method"
)
if self.verbose:
llama_cpp.llama_reset_timings(self._ctx.ctx)
if isinstance(input, str):
inputs = [input]
else:
inputs = input
# reset batch
self._batch.reset()
# decode and fetch embeddings
data: Union[List[List[float]], List[List[List[float]]]] = []
def decode_batch(seq_sizes: List[int]):
assert self._ctx.ctx is not None
llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
self._ctx.decode(self._batch)
self._batch.reset()
# store embeddings
if pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE:
pos: int = 0
for i, size in enumerate(seq_sizes):
ptr = llama_cpp.llama_get_embeddings(self._ctx.ctx)
embedding: List[List[float]] = [
ptr[pos + j * n_embd : pos + (j + 1) * n_embd] for j in range(size)
]
if normalize:
embedding = [_normalize_embedding(e) for e in embedding]
data.append(embedding)
pos += size
else:
for i in range(len(seq_sizes)):
ptr = llama_cpp.llama_get_embeddings_seq(self._ctx.ctx, i)
embedding: List[float] = ptr[:n_embd]
if normalize:
embedding = _normalize_embedding(embedding)
data.append(embedding)
# init state
total_tokens = 0
s_batch = []
t_batch = 0
p_batch = 0
# accumulate batches and encode
for text in inputs:
tokens = self.tokenize(text.encode("utf-8"))
if truncate:
tokens = tokens[:n_batch]
n_tokens = len(tokens)
total_tokens += n_tokens
# check for overrun
if n_tokens > n_batch:
raise ValueError(
f"Requested tokens ({n_tokens}) exceed batch size of {n_batch}"
)
# time to eval batch
if t_batch + n_tokens > n_batch:
decode_batch(s_batch)
s_batch = []
t_batch = 0
p_batch = 0
# add to batch
self._batch.add_sequence(tokens, p_batch, logits_all)
# update batch stats
s_batch.append(n_tokens)
t_batch += n_tokens
p_batch += 1
# hanlde last batch
decode_batch(s_batch)
if self.verbose:
llama_cpp.llama_print_timings(self._ctx.ctx)
output = data[0] if isinstance(input, str) else data
llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
self.reset()
if return_count:
return output, total_tokens
else:
return output
def _create_completion(
self,
prompt: Union[str, List[int]],
suffix: Optional[str] = None,
max_tokens: Optional[int] = 16,
temperature: float = 0.8,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
logprobs: Optional[int] = None,
echo: bool = False,
stop: Optional[Union[str, List[str]]] = [],
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
seed: Optional[int] = None,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_processor: Optional[LogitsProcessorList] = None,
grammar: Optional[LlamaGrammar] = None,
logit_bias: Optional[Dict[str, float]] = None,
) -> Union[
Iterator[CreateCompletionResponse], Iterator[CreateCompletionStreamResponse]
]:
assert self._ctx is not None
assert suffix is None or suffix.__class__ is str
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
created: int = int(time.time())
# If prompt is empty, initialize completion with BOS token to avoid
# detokenization including a space at the beginning of the completion
completion_tokens: List[int] = [] if len(prompt) > 0 else [self.token_bos()]
# Add blank space to start of prompt to match OG llama tokenizer
prompt_tokens: List[int] = (
(
self.tokenize(prompt.encode("utf-8"), special=True)
if prompt != ""
else [self.token_bos()]
)
if isinstance(prompt, str)
else prompt
)
text: bytes = b""
returned_tokens: int = 0
stop = (
stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
)
model_name: str = model if model is not None else self.model_path
# NOTE: This likely doesn't work correctly for the first token in the prompt
# because of the extra space added to the start of the prompt_tokens
if logit_bias is not None:
logit_bias_map = {int(k): float(v) for k, v in logit_bias.items()}
def logit_bias_processor(
input_ids: npt.NDArray[np.intc],
scores: npt.NDArray[np.single],
) -> npt.NDArray[np.single]:
new_scores = np.copy(
scores
) # Does it make sense to copy the whole array or can we just overwrite the original one?
for input_id, score in logit_bias_map.items():
new_scores[input_id] = score + scores[input_id]
return new_scores
_logit_bias_processor = LogitsProcessorList([logit_bias_processor])
if logits_processor is None:
logits_processor = _logit_bias_processor
else:
logits_processor = logits_processor.extend(_logit_bias_processor)
if self.verbose:
self._ctx.reset_timings()
if len(prompt_tokens) >= self._n_ctx:
raise ValueError(
f"Requested tokens ({len(prompt_tokens)}) exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
)
if max_tokens is None or max_tokens <= 0:
# Unlimited, depending on n_ctx.
max_tokens = self._n_ctx - len(prompt_tokens)
# Truncate max_tokens if requested tokens would exceed the context window
max_tokens = (
max_tokens
if max_tokens + len(prompt_tokens) < self._n_ctx
else (self._n_ctx - len(prompt_tokens))
)
if stop != []:
stop_sequences = [s.encode("utf-8") for s in stop]
else:
stop_sequences = []
if logprobs is not None and self.context_params.logits_all is False:
raise ValueError(
"logprobs is not supported for models created with logits_all=False"
)
if self.cache:
try:
cache_item = self.cache[prompt_tokens]
cache_prefix_len = Llama.longest_token_prefix(
cache_item.input_ids.tolist(), prompt_tokens
)
eval_prefix_len = Llama.longest_token_prefix(
self._input_ids.tolist(), prompt_tokens
)
if cache_prefix_len > eval_prefix_len:
self.load_state(cache_item)
if self.verbose:
print("Llama._create_completion: cache hit", file=sys.stderr)
except KeyError:
if self.verbose:
print("Llama._create_completion: cache miss", file=sys.stderr)
if seed is not None:
self._ctx.set_rng_seed(seed)
finish_reason = "length"
multibyte_fix = 0
for token in self.generate(
prompt_tokens,
top_k=top_k,
top_p=top_p,
min_p=min_p,
typical_p=typical_p,
temp=temperature,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
repeat_penalty=repeat_penalty,
stopping_criteria=stopping_criteria,
logits_processor=logits_processor,
grammar=grammar,
):
assert self._model.model is not None
if llama_cpp.llama_token_is_eog(self._model.model, token):
text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
finish_reason = "stop"
break
completion_tokens.append(token)
all_text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
# Contains multi-byte UTF8
for k, char in enumerate(all_text[-3:]):
k = 3 - k
for num, pattern in [(2, 192), (3, 224), (4, 240)]:
# Bitwise AND check
if num > k and pattern & char == pattern:
multibyte_fix = num - k
# Stop incomplete bytes from passing
if multibyte_fix > 0:
multibyte_fix -= 1
continue
any_stop = [s for s in stop_sequences if s in all_text]
if len(any_stop) > 0:
first_stop = any_stop[0]
text = all_text[: all_text.index(first_stop)]
finish_reason = "stop"
break
if stream:
remaining_tokens = completion_tokens[returned_tokens:]
remaining_text = self.detokenize(remaining_tokens, prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])
remaining_length = len(remaining_text)
# We want to avoid yielding any characters from
# the generated text if they are part of a stop
# sequence.
first_stop_position = 0
for s in stop_sequences:
for i in range(min(len(s), remaining_length), 0, -1):
if remaining_text.endswith(s[:i]):
if i > first_stop_position:
first_stop_position = i
break
token_end_position = 0
if logprobs is not None:
# not sure how to handle this branch when dealing
# with CJK output, so keep it unchanged
for token in remaining_tokens:
if token == self.token_bos():
continue
token_end_position += len(self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]))
# Check if stop sequence is in the token
if token_end_position > (
remaining_length - first_stop_position
):
break
token_str = self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode(
"utf-8", errors="ignore"
)
text_offset = len(prompt) + len(
self.detokenize(completion_tokens[:returned_tokens], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode(
"utf-8", errors="ignore"
)
)
token_offset = len(prompt_tokens) + returned_tokens
logits = self._scores[token_offset - 1, :]
current_logprobs = Llama.logits_to_logprobs(logits).tolist()
sorted_logprobs = list(
sorted(
zip(current_logprobs, range(len(current_logprobs))),
reverse=True,
)
)
top_logprob = {
self.detokenize([i]).decode(
"utf-8", errors="ignore"
): logprob
for logprob, i in sorted_logprobs[:logprobs]
}
top_logprob.update({token_str: current_logprobs[int(token)]})
logprobs_or_none = {
"tokens": [
self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode(
"utf-8", errors="ignore"
)
],
"text_offset": [text_offset],
"token_logprobs": [current_logprobs[int(token)]],
"top_logprobs": [top_logprob],
}
returned_tokens += 1
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]).decode(
"utf-8", errors="ignore"
),
"index": 0,
"logprobs": logprobs_or_none,
"finish_reason": None,
}
],
}
else:
while len(remaining_tokens) > 0:
decode_success = False
for i in range(1, len(remaining_tokens) + 1):
try:
bs = self.detokenize(remaining_tokens[:i], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])
ts = bs.decode("utf-8")
decode_success = True
break
except UnicodeError:
pass
else:
break
if not decode_success:
# all remaining tokens cannot be decoded to a UTF-8 character
break
token_end_position += len(bs)
if token_end_position > (
remaining_length - first_stop_position
):
break
remaining_tokens = remaining_tokens[i:]
returned_tokens += i
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": ts,
"index": 0,
"logprobs": None,
"finish_reason": None,
}
],
}
if len(completion_tokens) >= max_tokens:
text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
finish_reason = "length"
break
if stopping_criteria is not None and stopping_criteria(
self._input_ids, self._scores[-1, :]
):
text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
finish_reason = "stop"
if self.verbose:
self._ctx.print_timings()
if stream:
remaining_tokens = completion_tokens[returned_tokens:]
all_text = self.detokenize(remaining_tokens, prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])
any_stop = [s for s in stop_sequences if s in all_text]
if len(any_stop) > 0:
end = min(all_text.index(stop) for stop in any_stop)
else:
end = len(all_text)
token_end_position = 0
for token in remaining_tokens:
token_end_position += len(self.detokenize([token], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens]))
logprobs_or_none: Optional[CompletionLogprobs] = None
if logprobs is not None:
if token == self.token_bos():
continue
token_str = self.detokenize([token]).decode(
"utf-8", errors="ignore"
)
text_offset = len(prompt) + len(
self.detokenize(completion_tokens[:returned_tokens], prev_tokens=prompt_tokens + completion_tokens[:returned_tokens])
)
token_offset = len(prompt_tokens) + returned_tokens - 1
logits = self._scores[token_offset, :]
current_logprobs = Llama.logits_to_logprobs(logits).tolist()
sorted_logprobs = list(
sorted(
zip(current_logprobs, range(len(current_logprobs))),
reverse=True,
)
)
top_logprob = {
self.detokenize([i]).decode("utf-8", errors="ignore"): logprob
for logprob, i in sorted_logprobs[:logprobs]
}
top_logprob.update({token_str: current_logprobs[int(token)]})
logprobs_or_none = {
"tokens": [
self.detokenize([token]).decode("utf-8", errors="ignore")
],
"text_offset": [text_offset],
"token_logprobs": [current_logprobs[int(token)]],
"top_logprobs": [top_logprob],
}
if token_end_position >= end:
last_text = self.detokenize([token])
if token_end_position == end - 1:
break
returned_tokens += 1
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": last_text[
: len(last_text) - (token_end_position - end)
].decode("utf-8", errors="ignore"),
"index": 0,
"logprobs": logprobs_or_none,
"finish_reason": None,
}
],
}
break
returned_tokens += 1
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": self.detokenize([token]).decode(
"utf-8", errors="ignore"
),
"index": 0,
"logprobs": logprobs_or_none,
"finish_reason": None,
}
],
}
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": "",
"index": 0,
"logprobs": None,
"finish_reason": finish_reason,
}
],
}
if self.cache:
if self.verbose:
print("Llama._create_completion: cache save", file=sys.stderr)
self.cache[prompt_tokens + completion_tokens] = self.save_state()
print("Llama._create_completion: cache saved", file=sys.stderr)
return
if self.cache:
if self.verbose:
print("Llama._create_completion: cache save", file=sys.stderr)
self.cache[prompt_tokens + completion_tokens] = self.save_state()
text_str = text.decode("utf-8", errors="ignore")
if echo:
text_str = prompt + text_str
if suffix is not None:
text_str = text_str + suffix
logprobs_or_none: Optional[CompletionLogprobs] = None
if logprobs is not None:
text_offset = 0 if echo else len(prompt)
token_offset = 0 if echo else len(prompt_tokens[1:])
text_offsets: List[int] = []
token_logprobs: List[Optional[float]] = []
tokens: List[str] = []
top_logprobs: List[Optional[Dict[str, float]]] = []
if echo:
# Remove leading BOS token
all_tokens = prompt_tokens[1:] + completion_tokens
else:
all_tokens = completion_tokens
all_token_strs = [
self.detokenize([token], prev_tokens=all_tokens[:i]).decode("utf-8", errors="ignore")
for i, token in enumerate(all_tokens)
]
all_logprobs = Llama.logits_to_logprobs(self._scores)[token_offset:]
# TODO: may be able to change this loop to use np.take_along_dim
for idx, (token, token_str, logprobs_token) in enumerate(
zip(all_tokens, all_token_strs, all_logprobs)
):
if token == self.token_bos():
continue
text_offsets.append(
text_offset
+ len(
self.detokenize(all_tokens[:idx]).decode(
"utf-8", errors="ignore"
)
)
)
tokens.append(token_str)
sorted_logprobs = list(
sorted(
zip(logprobs_token, range(len(logprobs_token))), reverse=True
)
)
token_logprobs.append(logprobs_token[int(token)])
top_logprob: Optional[Dict[str, float]] = {
self.detokenize([i], prev_tokens=all_tokens[:idx]).decode("utf-8", errors="ignore"): logprob
for logprob, i in sorted_logprobs[:logprobs]
}
top_logprob.update({token_str: logprobs_token[int(token)]})
top_logprobs.append(top_logprob)
# Weird idosincracy of the OpenAI API where
# token_logprobs and top_logprobs are null for
# the first token.
if echo and len(all_tokens) > 0:
token_logprobs[0] = None
top_logprobs[0] = None
logprobs_or_none = {
"tokens": tokens,
"text_offset": text_offsets,
"token_logprobs": token_logprobs,
"top_logprobs": top_logprobs,
}
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": text_str,
"index": 0,
"logprobs": logprobs_or_none,
"finish_reason": finish_reason,
}
],
"usage": {
"prompt_tokens": len(prompt_tokens),
"completion_tokens": len(completion_tokens),
"total_tokens": len(prompt_tokens) + len(completion_tokens),
},
}
def create_completion(
self,
prompt: Union[str, List[int]],
suffix: Optional[str] = None,
max_tokens: Optional[int] = 16,
temperature: float = 0.8,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
logprobs: Optional[int] = None,
echo: bool = False,
stop: Optional[Union[str, List[str]]] = [],
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
seed: Optional[int] = None,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_processor: Optional[LogitsProcessorList] = None,
grammar: Optional[LlamaGrammar] = None,
logit_bias: Optional[Dict[str, float]] = None,
) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
"""Generate text from a prompt.
Args:
prompt: The prompt to generate text from.
suffix: A suffix to append to the generated text. If None, no suffix is appended.
max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
temperature: The temperature to use for sampling.
top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
logprobs: The number of logprobs to return. If None, no logprobs are returned.
echo: Whether to echo the prompt.
stop: A list of strings to stop generation when encountered.
frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
repeat_penalty: The penalty to apply to repeated tokens.
top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
stream: Whether to stream the results.
seed: The seed to use for sampling.
tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
mirostat_mode: The mirostat sampling mode.
mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
model: The name to use for the model in the completion object.
stopping_criteria: A list of stopping criteria to use.
logits_processor: A list of logits processors to use.
grammar: A grammar to use for constrained sampling.
logit_bias: A logit bias to use.
Raises:
ValueError: If the requested tokens exceed the context window.
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
Returns:
Response object containing the generated text.
"""
completion_or_chunks = self._create_completion(
prompt=prompt,
suffix=suffix,
max_tokens=-1 if max_tokens is None else max_tokens,
temperature=temperature,
top_p=top_p,
min_p=min_p,
typical_p=typical_p,
logprobs=logprobs,
echo=echo,
stop=stop,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
repeat_penalty=repeat_penalty,
top_k=top_k,
stream=stream,
seed=seed,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
model=model,
stopping_criteria=stopping_criteria,
logits_processor=logits_processor,
grammar=grammar,
logit_bias=logit_bias,
)
if stream:
chunks: Iterator[CreateCompletionStreamResponse] = completion_or_chunks
return chunks
completion: Completion = next(completion_or_chunks) # type: ignore
return completion
def __call__(
self,
prompt: str,
suffix: Optional[str] = None,
max_tokens: Optional[int] = 16,
temperature: float = 0.8,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
logprobs: Optional[int] = None,
echo: bool = False,
stop: Optional[Union[str, List[str]]] = [],
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
seed: Optional[int] = None,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_processor: Optional[LogitsProcessorList] = None,
grammar: Optional[LlamaGrammar] = None,
logit_bias: Optional[Dict[str, float]] = None,
) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
"""Generate text from a prompt.
Args:
prompt: The prompt to generate text from.
suffix: A suffix to append to the generated text. If None, no suffix is appended.
max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
temperature: The temperature to use for sampling.
top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
logprobs: The number of logprobs to return. If None, no logprobs are returned.
echo: Whether to echo the prompt.
stop: A list of strings to stop generation when encountered.
frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
repeat_penalty: The penalty to apply to repeated tokens.
top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
stream: Whether to stream the results.
seed: The seed to use for sampling.
tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
mirostat_mode: The mirostat sampling mode.
mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
model: The name to use for the model in the completion object.
stopping_criteria: A list of stopping criteria to use.
logits_processor: A list of logits processors to use.
grammar: A grammar to use for constrained sampling.
logit_bias: A logit bias to use.
Raises:
ValueError: If the requested tokens exceed the context window.
RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.
Returns:
Response object containing the generated text.
"""
return self.create_completion(
prompt=prompt,
suffix=suffix,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
min_p=min_p,
typical_p=typical_p,
logprobs=logprobs,
echo=echo,
stop=stop,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
repeat_penalty=repeat_penalty,
top_k=top_k,
stream=stream,
seed=seed,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
model=model,
stopping_criteria=stopping_criteria,
logits_processor=logits_processor,
grammar=grammar,
logit_bias=logit_bias,
)
def create_chat_completion(
self,
messages: List[ChatCompletionRequestMessage],
functions: Optional[List[ChatCompletionFunction]] = None,
function_call: Optional[ChatCompletionRequestFunctionCall] = None,
tools: Optional[List[ChatCompletionTool]] = None,
tool_choice: Optional[ChatCompletionToolChoiceOption] = None,
temperature: float = 0.2,
top_p: float = 0.95,
top_k: int = 40,
min_p: float = 0.05,
typical_p: float = 1.0,
stream: bool = False,
stop: Optional[Union[str, List[str]]] = [],
seed: Optional[int] = None,
response_format: Optional[ChatCompletionRequestResponseFormat] = None,
max_tokens: Optional[int] = None,
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
repeat_penalty: float = 1.1,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
logits_processor: Optional[LogitsProcessorList] = None,
grammar: Optional[LlamaGrammar] = None,
logit_bias: Optional[Dict[str, float]] = None,
logprobs: Optional[bool] = None,
top_logprobs: Optional[int] = None,
) -> Union[
CreateChatCompletionResponse, Iterator[CreateChatCompletionStreamResponse]
]:
"""Generate a chat completion from a list of messages.
Args:
messages: A list of messages to generate a response for.
functions: A list of functions to use for the chat completion.
function_call: A function call to use for the chat completion.
tools: A list of tools to use for the chat completion.
tool_choice: A tool choice to use for the chat completion.
temperature: The temperature to use for sampling.
top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
stream: Whether to stream the results.
stop: A list of strings to stop generation when encountered.
seed: The seed to use for sampling.
response_format: The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.
max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
repeat_penalty: The penalty to apply to repeated tokens.
tfs_z: The tail-free sampling parameter.
mirostat_mode: The mirostat sampling mode.
mirostat_tau: The mirostat sampling tau parameter.
mirostat_eta: The mirostat sampling eta parameter.
model: The name to use for the model in the completion object.
logits_processor: A list of logits processors to use.
grammar: A grammar to use.
logit_bias: A logit bias to use.
Returns:
Generated chat completion or a stream of chat completion chunks.
"""
handler = self.chat_handler or llama_chat_format.get_chat_completion_handler(
self.chat_format
)
return handler(
llama=self,
messages=messages,
functions=functions,
function_call=function_call,
tools=tools,
tool_choice=tool_choice,
temperature=temperature,
top_p=top_p,
top_k=top_k,
min_p=min_p,
typical_p=typical_p,
logprobs=logprobs,
top_logprobs=top_logprobs,
stream=stream,
stop=stop,
seed=seed,
response_format=response_format,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
repeat_penalty=repeat_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
model=model,
logits_processor=logits_processor,
grammar=grammar,
logit_bias=logit_bias,
)
def create_chat_completion_openai_v1(
self,
*args: Any,
**kwargs: Any,
):
"""Generate a chat completion with return type based on the the OpenAI v1 API.
OpenAI python package is required to use this method.
You can install it with `pip install openai`.
Args:
*args: Positional arguments to pass to create_chat_completion.
**kwargs: Keyword arguments to pass to create_chat_completion.
Returns:
Generated chat completion or a stream of chat completion chunks.
"""
try:
from openai.types.chat import ChatCompletion, ChatCompletionChunk
stream = kwargs.get("stream", False) # type: ignore
assert isinstance(stream, bool)
if stream:
return (ChatCompletionChunk(**chunk) for chunk in self.create_chat_completion(*args, **kwargs)) # type: ignore
else:
return ChatCompletion(**self.create_chat_completion(*args, **kwargs)) # type: ignore
except ImportError:
raise ImportError(
"To use create_chat_completion_openai_v1, you must install the openai package."
"You can install it with `pip install openai`."
)
def __getstate__(self):
return dict(
model_path=self.model_path,
# Model Params
n_gpu_layers=self.model_params.n_gpu_layers,
split_mode=self.model_params.split_mode,
main_gpu=self.model_params.main_gpu,
tensor_split=self.tensor_split,
vocab_only=self.model_params.vocab_only,
use_mmap=self.model_params.use_mmap,
use_mlock=self.model_params.use_mlock,
kv_overrides=self.kv_overrides,
# Context Params
seed=self.context_params.seed,
n_ctx=self.context_params.n_ctx,
n_batch=self.n_batch,
n_threads=self.context_params.n_threads,
n_threads_batch=self.context_params.n_threads_batch,
rope_scaling_type=self.context_params.rope_scaling_type,
pooling_type=self.context_params.pooling_type,
rope_freq_base=self.context_params.rope_freq_base,
rope_freq_scale=self.context_params.rope_freq_scale,
yarn_ext_factor=self.context_params.yarn_ext_factor,
yarn_attn_factor=self.context_params.yarn_attn_factor,
yarn_beta_fast=self.context_params.yarn_beta_fast,
yarn_beta_slow=self.context_params.yarn_beta_slow,
yarn_orig_ctx=self.context_params.yarn_orig_ctx,
logits_all=self.context_params.logits_all,
embedding=self.context_params.embeddings,
offload_kqv=self.context_params.offload_kqv,
flash_attn=self.context_params.flash_attn,
# Sampling Params
last_n_tokens_size=self.last_n_tokens_size,
# LoRA Params
lora_base=self.lora_base,
lora_scale=self.lora_scale,
lora_path=self.lora_path,
# Backend Params
numa=self.numa,
# Chat Format Params
chat_format=self.chat_format,
chat_handler=self.chat_handler,
# Speculative Decidng
draft_model=self.draft_model,
# KV cache quantization
type_k=self.context_params.type_k,
type_v=self.context_params.type_v,
# Misc
verbose=self.verbose,
)
def __setstate__(self, state):
self.__init__(**state)
def save_state(self) -> LlamaState:
assert self._ctx.ctx is not None
if self.verbose:
print("Llama.save_state: saving llama state", file=sys.stderr)
state_size = llama_cpp.llama_get_state_size(self._ctx.ctx)
if self.verbose:
print(f"Llama.save_state: got state size: {state_size}", file=sys.stderr)
llama_state = (ctypes.c_uint8 * int(state_size))()
if self.verbose:
print("Llama.save_state: allocated state", file=sys.stderr)
n_bytes = llama_cpp.llama_copy_state_data(self._ctx.ctx, llama_state)
if self.verbose:
print(f"Llama.save_state: copied llama state: {n_bytes}", file=sys.stderr)
if int(n_bytes) > int(state_size):
raise RuntimeError("Failed to copy llama state data")
llama_state_compact = (ctypes.c_uint8 * int(n_bytes))()
llama_cpp.ctypes.memmove(llama_state_compact, llama_state, int(n_bytes))
if self.verbose:
print(
f"Llama.save_state: saving {n_bytes} bytes of llama state",
file=sys.stderr,
)
return LlamaState(
scores=self._scores.copy(),
input_ids=self.input_ids.copy(),
n_tokens=self.n_tokens,
llama_state=bytes(llama_state_compact),
llama_state_size=n_bytes,
)
def load_state(self, state: LlamaState) -> None:
assert self._ctx.ctx is not None
# Only filling in up to `n_tokens` and then zero-ing out the rest
self.scores[: state.n_tokens, :] = state.scores.copy()
self.scores[state.n_tokens :, :] = 0.0
self.input_ids = state.input_ids.copy()
self.n_tokens = state.n_tokens
state_size = state.llama_state_size
LLamaStateArrayType = ctypes.c_uint8 * state_size
llama_state = LLamaStateArrayType.from_buffer_copy(state.llama_state)
if llama_cpp.llama_set_state_data(self._ctx.ctx, llama_state) != state_size:
raise RuntimeError("Failed to set llama state data")
def n_ctx(self) -> int:
"""Return the context window size."""
return self._ctx.n_ctx()
def n_embd(self) -> int:
"""Return the embedding size."""
return self._model.n_embd()
def n_vocab(self) -> int:
"""Return the vocabulary size."""
return self._model.n_vocab()
def tokenizer(self) -> LlamaTokenizer:
"""Return the llama tokenizer for this model."""
return LlamaTokenizer(self)
def token_eos(self) -> int:
"""Return the end-of-sequence token."""
return self._model.token_eos()
def token_bos(self) -> int:
"""Return the beginning-of-sequence token."""
return self._model.token_bos()
def token_nl(self) -> int:
"""Return the newline token."""
return self._model.token_nl()
def pooling_type(self) -> str:
"""Return the pooling type."""
return self._ctx.pooling_type()
@staticmethod
def logits_to_logprobs(
logits: Union[npt.NDArray[np.single], List], axis: int = -1
) -> npt.NDArray[np.single]:
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.html
logits_maxs: np.ndarray = np.amax(logits, axis=axis, keepdims=True)
if logits_maxs.ndim > 0:
logits_maxs[~np.isfinite(logits_maxs)] = 0
elif not np.isfinite(logits_maxs):
logits_maxs = 0
subtract_maxs = np.subtract(logits, logits_maxs, dtype=np.single)
exp = np.exp(subtract_maxs)
# Suppress warnings about log of zero
with np.errstate(divide="ignore"):
summed = np.sum(exp, axis=axis, keepdims=True)
out = np.log(summed)
return subtract_maxs - out
@staticmethod
def longest_token_prefix(a: Sequence[int], b: Sequence[int]):
longest_prefix = 0
for _a, _b in zip(a, b):
if _a == _b:
longest_prefix += 1
else:
break
return longest_prefix
@classmethod
def from_pretrained(
cls,
repo_id: str,
filename: Optional[str],
local_dir: Optional[Union[str, os.PathLike[str]]] = None,
local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto",
cache_dir: Optional[Union[str, os.PathLike[str]]] = None,
**kwargs: Any,
) -> "Llama":
"""Create a Llama model from a pretrained model name or path.
This method requires the huggingface-hub package.
You can install it with `pip install huggingface-hub`.
Args:
repo_id: The model repo id.
filename: A filename or glob pattern to match the model file in the repo.
local_dir: The local directory to save the model to.
local_dir_use_symlinks: Whether to use symlinks when downloading the model.
**kwargs: Additional keyword arguments to pass to the Llama constructor.
Returns:
A Llama model."""
try:
from huggingface_hub import hf_hub_download, HfFileSystem
from huggingface_hub.utils import validate_repo_id
except ImportError:
raise ImportError(
"Llama.from_pretrained requires the huggingface-hub package. "
"You can install it with `pip install huggingface-hub`."
)
validate_repo_id(repo_id)
hffs = HfFileSystem()
files = [
file["name"] if isinstance(file, dict) else file
for file in hffs.ls(repo_id)
]
# split each file into repo_id, subfolder, filename
file_list: List[str] = []
for file in files:
rel_path = Path(file).relative_to(repo_id)
file_list.append(str(rel_path))
matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)] # type: ignore
if len(matching_files) == 0:
raise ValueError(
f"No file found in {repo_id} that match {filename}\n\n"
f"Available Files:\n{json.dumps(file_list)}"
)
if len(matching_files) > 1:
raise ValueError(
f"Multiple files found in {repo_id} matching {filename}\n\n"
f"Available Files:\n{json.dumps(files)}"
)
(matching_file,) = matching_files
subfolder = str(Path(matching_file).parent)
filename = Path(matching_file).name
# download the file
hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
local_dir=local_dir,
local_dir_use_symlinks=local_dir_use_symlinks,
cache_dir=cache_dir,
)
if local_dir is None:
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
local_dir=local_dir,
local_dir_use_symlinks=local_dir_use_symlinks,
cache_dir=cache_dir,
local_files_only=True,
)
else:
model_path = os.path.join(local_dir, filename)
return cls(
model_path=model_path,
**kwargs,
)
class LlamaState:
def __init__(
self,
input_ids: npt.NDArray[np.intc],
scores: npt.NDArray[np.single],
n_tokens: int,
llama_state: bytes,
llama_state_size: int,
):
self.input_ids = input_ids
self.scores = scores
self.n_tokens = n_tokens
self.llama_state = llama_state
self.llama_state_size = llama_state_size
LogitsProcessor = Callable[
[npt.NDArray[np.intc], npt.NDArray[np.single]], npt.NDArray[np.single]
]
class LogitsProcessorList(List[LogitsProcessor]):
def __call__(
self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single]
) -> npt.NDArray[np.single]:
for processor in self:
scores = processor(input_ids, scores)
return scores
StoppingCriteria = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], bool]
class StoppingCriteriaList(List[StoppingCriteria]):
def __call__(
self, input_ids: npt.NDArray[np.intc], logits: npt.NDArray[np.single]
) -> bool:
return any([stopping_criteria(input_ids, logits) for stopping_criteria in self])
|