Spaces:
Runtime error
Runtime error
File size: 10,733 Bytes
4bdb245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import ctypes
import numpy as np
import pytest
from scipy.special import log_softmax
import llama_cpp
MODEL = "./vendor/llama.cpp/models/ggml-vocab-llama-spm.gguf"
def test_llama_cpp_tokenization():
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, verbose=False)
assert llama
assert llama._ctx.ctx is not None
text = b"Hello World"
tokens = llama.tokenize(text)
assert tokens[0] == llama.token_bos()
assert tokens == [1, 15043, 2787]
detokenized = llama.detokenize(tokens)
assert detokenized == text
tokens = llama.tokenize(text, add_bos=False)
assert tokens[0] != llama.token_bos()
assert tokens == [15043, 2787]
detokenized = llama.detokenize(tokens)
assert detokenized != text
text = b"Hello World</s>"
tokens = llama.tokenize(text)
assert tokens[-1] != llama.token_eos()
assert tokens == [1, 15043, 2787, 829, 29879, 29958]
tokens = llama.tokenize(text, special=True)
assert tokens[-1] == llama.token_eos()
assert tokens == [1, 15043, 2787, 2]
text = b""
tokens = llama.tokenize(text, add_bos=True, special=True)
assert tokens[-1] != llama.token_eos()
assert tokens == [llama.token_bos()]
assert text == llama.detokenize(tokens)
@pytest.fixture
def mock_llama(monkeypatch):
def setup_mock(llama: llama_cpp.Llama, output_text: str):
n_ctx = llama.n_ctx()
n_vocab = llama.n_vocab()
output_tokens = llama.tokenize(
output_text.encode("utf-8"), add_bos=True, special=True
)
logits = (ctypes.c_float * (n_vocab * n_ctx))(-100.0)
for i in range(n_ctx):
output_idx = i + 1 # logits for first tokens predict second token
if output_idx < len(output_tokens):
logits[i * n_vocab + output_tokens[output_idx]] = 100.0
else:
logits[i * n_vocab + llama.token_eos()] = 100.0
n = 0
last_n_tokens = 0
def mock_decode(ctx: llama_cpp.llama_context_p, batch: llama_cpp.llama_batch):
# Test some basic invariants of this mocking technique
assert ctx == llama._ctx.ctx, "context does not match mock_llama"
assert batch.n_tokens > 0, "no tokens in batch"
assert all(
batch.n_seq_id[i] == 1 for i in range(batch.n_tokens)
), "n_seq >1 not supported by mock_llama"
assert all(
batch.seq_id[i][0] == 0 for i in range(batch.n_tokens)
), "n_seq >1 not supported by mock_llama"
assert batch.logits[
batch.n_tokens - 1
], "logits not allocated for last token"
# Update the mock context state
nonlocal n
nonlocal last_n_tokens
n = max(batch.pos[i] for i in range(batch.n_tokens)) + 1
last_n_tokens = batch.n_tokens
return 0
def mock_get_logits(ctx: llama_cpp.llama_context_p):
# Test some basic invariants of this mocking technique
assert ctx == llama._ctx.ctx, "context does not match mock_llama"
assert n > 0, "mock_llama_decode not called"
assert last_n_tokens > 0, "mock_llama_decode not called"
# Return view of logits for last_n_tokens
return (ctypes.c_float * (last_n_tokens * n_vocab)).from_address(
ctypes.addressof(logits)
+ (n - last_n_tokens) * n_vocab * ctypes.sizeof(ctypes.c_float)
)
monkeypatch.setattr("llama_cpp.llama_cpp.llama_decode", mock_decode)
monkeypatch.setattr("llama_cpp.llama_cpp.llama_get_logits", mock_get_logits)
def mock_kv_cache_clear(ctx: llama_cpp.llama_context_p):
# Test some basic invariants of this mocking technique
assert ctx == llama._ctx.ctx, "context does not match mock_llama"
return
def mock_kv_cache_seq_rm(
ctx: llama_cpp.llama_context_p,
seq_id: llama_cpp.llama_seq_id,
pos0: llama_cpp.llama_pos,
pos1: llama_cpp.llama_pos,
):
# Test some basic invariants of this mocking technique
assert ctx == llama._ctx.ctx, "context does not match mock_llama"
return
def mock_kv_cache_seq_cp(
ctx: llama_cpp.llama_context_p,
seq_id_src: llama_cpp.llama_seq_id,
seq_id_dst: llama_cpp.llama_seq_id,
pos0: llama_cpp.llama_pos,
pos1: llama_cpp.llama_pos,
):
# Test some basic invariants of this mocking technique
assert ctx == llama._ctx.ctx, "context does not match mock_llama"
return
def mock_kv_cache_seq_keep(
ctx: llama_cpp.llama_context_p,
seq_id: llama_cpp.llama_seq_id,
):
# Test some basic invariants of this mocking technique
assert ctx == llama._ctx.ctx, "context does not match mock_llama"
return
def mock_kv_cache_seq_add(
ctx: llama_cpp.llama_context_p,
seq_id: llama_cpp.llama_seq_id,
pos0: llama_cpp.llama_pos,
pos1: llama_cpp.llama_pos,
):
# Test some basic invariants of this mocking technique
assert ctx == llama._ctx.ctx, "context does not match mock_llama"
return
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_clear", mock_kv_cache_clear)
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_seq_rm", mock_kv_cache_seq_rm)
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_seq_cp", mock_kv_cache_seq_cp)
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_seq_keep", mock_kv_cache_seq_keep)
monkeypatch.setattr("llama_cpp.llama_cpp.llama_kv_cache_seq_add", mock_kv_cache_seq_add)
return setup_mock
def test_llama_patch(mock_llama):
n_ctx = 128
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, n_ctx=n_ctx)
n_vocab = llama_cpp.llama_n_vocab(llama._model.model)
assert n_vocab == 32000
text = "The quick brown fox"
output_text = " jumps over the lazy dog."
all_text = text + output_text
## Test basic completion from bos until eos
mock_llama(llama, all_text)
completion = llama.create_completion("", max_tokens=36)
assert completion["choices"][0]["text"] == all_text
assert completion["choices"][0]["finish_reason"] == "stop"
## Test basic completion until eos
mock_llama(llama, all_text)
completion = llama.create_completion(text, max_tokens=20)
assert completion["choices"][0]["text"] == output_text
assert completion["choices"][0]["finish_reason"] == "stop"
## Test streaming completion until eos
mock_llama(llama, all_text)
chunks = list(llama.create_completion(text, max_tokens=20, stream=True))
assert "".join(chunk["choices"][0]["text"] for chunk in chunks) == output_text
assert chunks[-1]["choices"][0]["finish_reason"] == "stop"
## Test basic completion until stop sequence
mock_llama(llama, all_text)
completion = llama.create_completion(text, max_tokens=20, stop=["lazy"])
assert completion["choices"][0]["text"] == " jumps over the "
assert completion["choices"][0]["finish_reason"] == "stop"
## Test streaming completion until stop sequence
mock_llama(llama, all_text)
chunks = list(
llama.create_completion(text, max_tokens=20, stream=True, stop=["lazy"])
)
assert (
"".join(chunk["choices"][0]["text"] for chunk in chunks) == " jumps over the "
)
assert chunks[-1]["choices"][0]["finish_reason"] == "stop"
## Test basic completion until length
mock_llama(llama, all_text)
completion = llama.create_completion(text, max_tokens=2)
assert completion["choices"][0]["text"] == " jumps"
assert completion["choices"][0]["finish_reason"] == "length"
## Test streaming completion until length
mock_llama(llama, all_text)
chunks = list(llama.create_completion(text, max_tokens=2, stream=True))
assert "".join(chunk["choices"][0]["text"] for chunk in chunks) == " jumps"
assert chunks[-1]["choices"][0]["finish_reason"] == "length"
def test_llama_pickle():
import pickle
import tempfile
fp = tempfile.TemporaryFile()
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True)
pickle.dump(llama, fp)
fp.seek(0)
llama = pickle.load(fp)
assert llama
assert llama.ctx is not None
text = b"Hello World"
assert llama.detokenize(llama.tokenize(text)) == text
def test_utf8(mock_llama):
llama = llama_cpp.Llama(model_path=MODEL, vocab_only=True, logits_all=True)
output_text = "😀"
## Test basic completion with utf8 multibyte
mock_llama(llama, output_text)
completion = llama.create_completion("", max_tokens=4)
assert completion["choices"][0]["text"] == output_text
## Test basic completion with incomplete utf8 multibyte
mock_llama(llama, output_text)
completion = llama.create_completion("", max_tokens=1)
assert completion["choices"][0]["text"] == ""
def test_llama_server():
from fastapi.testclient import TestClient
from llama_cpp.server.app import create_app, Settings
settings = Settings(
model=MODEL,
vocab_only=True,
)
app = create_app(settings)
client = TestClient(app)
response = client.get("/v1/models")
assert response.json() == {
"object": "list",
"data": [
{
"id": MODEL,
"object": "model",
"owned_by": "me",
"permissions": [],
}
],
}
@pytest.mark.parametrize(
"size_and_axis",
[
((32_000,), -1), # last token's next-token logits
((10, 32_000), -1), # many tokens' next-token logits, or batch of last tokens
((4, 10, 32_000), -1), # batch of texts
],
)
@pytest.mark.parametrize("convert_to_list", [True, False])
def test_logits_to_logprobs(size_and_axis, convert_to_list: bool, atol: float = 1e-7):
size, axis = size_and_axis
logits: np.ndarray = -np.random.uniform(low=0, high=60, size=size)
logits = logits.astype(np.single)
if convert_to_list:
# Currently, logits are converted from arrays to lists. This may change soon
logits = logits.tolist()
log_probs = llama_cpp.Llama.logits_to_logprobs(logits, axis=axis)
log_probs_correct = log_softmax(logits, axis=axis)
assert log_probs.dtype == np.single
assert log_probs.shape == size
assert np.allclose(log_probs, log_probs_correct, atol=atol)
def test_llama_cpp_version():
assert llama_cpp.__version__
|