File size: 5,343 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python3
from __future__ import annotations

import json
import os
import struct
import sys
from pathlib import Path
from typing import Any, BinaryIO, Sequence

import numpy as np
import torch

if 'NO_LOCAL_GGUF' not in os.environ:
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf

NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}


def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
    fout.write(b"ggla"[::-1])  # magic (ggml lora)
    fout.write(struct.pack("i", 1))  # file version
    fout.write(struct.pack("i", params["r"]))
    # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
    # but some models ship a float value instead
    # let's convert to int, but fail if lossless conversion is not possible
    assert (
        int(params["lora_alpha"]) == params["lora_alpha"]
    ), "cannot convert float to int losslessly"
    fout.write(struct.pack("i", int(params["lora_alpha"])))


def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
    sname = name.encode("utf-8")
    fout.write(
        struct.pack(
            "iii",
            len(shape),
            len(sname),
            NUMPY_TYPE_TO_FTYPE[data_type.name],
        )
    )
    fout.write(struct.pack("i" * len(shape), *shape[::-1]))
    fout.write(sname)
    fout.seek((fout.tell() + 31) & -32)


if __name__ == '__main__':
    if len(sys.argv) < 2:
        print(f"Usage: python {sys.argv[0]} <path> [arch]")
        print(
            "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
        )
        print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
        sys.exit(1)

    input_json = os.path.join(sys.argv[1], "adapter_config.json")
    input_model = os.path.join(sys.argv[1], "adapter_model.bin")
    output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")

    if os.path.exists(input_model):
        model = torch.load(input_model, map_location="cpu")
    else:
        input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
        # lazy import load_file only if lora is in safetensors format.
        from safetensors.torch import load_file
        model = load_file(input_model, device="cpu")

    arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"

    if arch_name not in gguf.MODEL_ARCH_NAMES.values():
        print(f"Error: unsupported architecture {arch_name}")
        sys.exit(1)

    arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
    name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone

    with open(input_json, "r") as f:
        params = json.load(f)

    if params["peft_type"] != "LORA":
        print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
        sys.exit(1)

    if params["fan_in_fan_out"] is True:
        print("Error: param fan_in_fan_out is not supported")
        sys.exit(1)

    if params["bias"] is not None and params["bias"] != "none":
        print("Error: param bias is not supported")
        sys.exit(1)

    # TODO: these seem to be layers that have been trained but without lora.
    # doesn't seem widely used but eventually should be supported
    if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
        print("Error: param modules_to_save is not supported")
        sys.exit(1)

    with open(output_path, "wb") as fout:
        fout.truncate()

        write_file_header(fout, params)
        for k, v in model.items():
            orig_k = k
            if k.endswith(".default.weight"):
                k = k.replace(".default.weight", ".weight")
            if k in ["llama_proj.weight", "llama_proj.bias"]:
                continue
            if k.endswith("lora_A.weight"):
                if v.dtype != torch.float16 and v.dtype != torch.float32:
                    v = v.float()
                v = v.T
            else:
                v = v.float()

            t = v.detach().numpy()

            prefix = "base_model.model."
            if k.startswith(prefix):
                k = k[len(prefix) :]

            lora_suffixes = (".lora_A.weight", ".lora_B.weight")
            if k.endswith(lora_suffixes):
                suffix = k[-len(lora_suffixes[0]):]
                k = k[: -len(lora_suffixes[0])]
            else:
                print(f"Error: unrecognized tensor name {orig_k}")
                sys.exit(1)

            tname = name_map.get_name(k)
            if tname is None:
                print(f"Error: could not map tensor name {orig_k}")
                print(" Note: the arch parameter must be specified if the model is not llama")
                sys.exit(1)

            if suffix == ".lora_A.weight":
                tname += ".weight.loraA"
            elif suffix == ".lora_B.weight":
                tname += ".weight.loraB"
            else:
                assert False

            print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
            write_tensor_header(fout, tname, t.shape, t.dtype)
            t.tofile(fout)

    print(f"Converted {input_json} and {input_model} to {output_path}")