File size: 6,530 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#include "common.h"
#include "llama.h"

#include <ctime>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

static std::vector<std::string> split_lines(const std::string & s) {
    std::string line;
    std::vector<std::string> lines;
    std::stringstream ss(s);
    while (std::getline(ss, line)) {
        lines.push_back(line);
    }
    return lines;
}

static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
    for (size_t i = 0; i < tokens.size(); i++) {
        llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
    }
}

static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
    // clear previous kv_cache values (irrelevant for embeddings)
    llama_kv_cache_clear(ctx);

    // run model
    fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
    if (llama_decode(ctx, batch) < 0) {
        fprintf(stderr, "%s : failed to decode\n", __func__);
    }

    for (int i = 0; i < batch.n_tokens; i++) {
        if (!batch.logits[i]) {
            continue;
        }

        // try to get sequence embeddings - supported only when pooling_type is not NONE
        const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
        if (embd == NULL) {
            embd = llama_get_embeddings_ith(ctx, i);
            if (embd == NULL) {
                fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
                continue;
            }
        }

        float * out = output + batch.seq_id[i][0] * n_embd;
        llama_embd_normalize(embd, out, n_embd);
    }
}

int main(int argc, char ** argv) {
    gpt_params params;

    if (!gpt_params_parse(argc, argv, params)) {
        return 1;
    }

    params.embedding = true;
    // For non-causal models, batch size must be equal to ubatch size
    params.n_ubatch = params.n_batch;

    print_build_info();

    if (params.seed == LLAMA_DEFAULT_SEED) {
        params.seed = time(NULL);
    }

    fprintf(stderr, "%s: seed  = %u\n", __func__, params.seed);

    std::mt19937 rng(params.seed);
    if (params.random_prompt) {
        params.prompt = gpt_random_prompt(rng);
    }

    llama_backend_init();
    llama_numa_init(params.numa);

    llama_model * model;
    llama_context * ctx;

    // load the model
    std::tie(model, ctx) = llama_init_from_gpt_params(params);
    if (model == NULL) {
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
        return 1;
    }

    const int n_ctx_train = llama_n_ctx_train(model);
    const int n_ctx = llama_n_ctx(ctx);

    if (n_ctx > n_ctx_train) {
        fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
                __func__, n_ctx_train, n_ctx);
    }

    // print system information
    {
        fprintf(stderr, "\n");
        fprintf(stderr, "%s\n", get_system_info(params).c_str());
    }

    // split the prompt into lines
    std::vector<std::string> prompts = split_lines(params.prompt);

    // max batch size
    const uint64_t n_batch = params.n_batch;
    GGML_ASSERT(params.n_batch >= params.n_ctx);

    // tokenize the prompts and trim
    std::vector<std::vector<int32_t>> inputs;
    for (const auto & prompt : prompts) {
        auto inp = ::llama_tokenize(ctx, prompt, true, false);
        if (inp.size() > n_batch) {
            fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
                    __func__, (long long int) inp.size(), (long long int) n_batch);
            return 1;
        }
        inputs.push_back(inp);
    }

    // add SEP if not present
    for (auto & inp : inputs) {
        if (inp.empty() || inp.back() != llama_token_sep(model)) {
            inp.push_back(llama_token_sep(model));
        }
    }

    // tokenization stats
    if (params.verbose_prompt) {
        for (int i = 0; i < (int) inputs.size(); i++) {
            fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
            fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
            for (int j = 0; j < (int) inputs[i].size(); j++) {
                fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
            }
            fprintf(stderr, "\n\n");
        }
    }

    // initialize batch
    const int n_prompts = prompts.size();
    struct llama_batch batch = llama_batch_init(n_batch, 0, 1);

    // allocate output
    const int n_embd = llama_n_embd(model);
    std::vector<float> embeddings(n_prompts * n_embd, 0);
    float * emb = embeddings.data();

    // break into batches
    int p = 0; // number of prompts processed already
    int s = 0; // number of prompts in current batch
    for (int k = 0; k < n_prompts; k++) {
        // clamp to n_batch tokens
        auto & inp = inputs[k];

        const uint64_t n_toks = inp.size();

        // encode if at capacity
        if (batch.n_tokens + n_toks > n_batch) {
            float * out = emb + p * n_embd;
            batch_decode(ctx, batch, out, s, n_embd);
            llama_batch_clear(batch);
            p += s;
            s = 0;
        }

        // add to batch
        batch_add_seq(batch, inp, s);
        s += 1;
    }

    // final batch
    float * out = emb + p * n_embd;
    batch_decode(ctx, batch, out, s, n_embd);

    // print the first part of the embeddings or for a single prompt, the full embedding
    fprintf(stdout, "\n");
    for (int j = 0; j < n_prompts; j++) {
        fprintf(stdout, "embedding %d: ", j);
        for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
            fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
        }
        fprintf(stdout, "\n");
    }

    // print cosine similarity matrix
    if (n_prompts > 1) {
        fprintf(stdout, "\n");
        printf("cosine similarity matrix:\n\n");
        for (int i = 0; i < n_prompts; i++) {
            for (int j = 0; j < n_prompts; j++) {
                float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
                fprintf(stdout, "%6.2f ", sim);
            }
            fprintf(stdout, "\n");
        }
    }

    // clean up
    llama_print_timings(ctx);
    llama_free(ctx);
    llama_free_model(model);
    llama_backend_free();

    return 0;
}