File size: 12,875 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#include "common.h"
#include "llama.h"

#include <algorithm>
#include <fstream>

struct retrieval_params {
    std::vector<std::string> context_files; // context files to embed
    int32_t chunk_size            = 64;     // chunk size for context embedding
    std::string chunk_separator   = "\n";   // chunk separator for context embedding
};

static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
    gpt_print_usage(argc, argv, gpt_params);
    printf("retrieval options:\n");
    printf("  --context-file FNAME  file containing context to embed.\n");
    printf("                        specify multiple files by providing --context-file option multiple times.\n");
    printf("  --chunk-size N        minimum length of embedded text chunk (default:%d)\n", params.chunk_size);
    printf("  --chunk-separator STRING\n");
    printf("                        string to separate chunks (default: \"\\n\")\n");
    printf("\n");
}

static void retrieval_params_parse(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & retrieval_params) {
    int i = 1;
    std::string arg;
    while (i < argc) {
        arg = argv[i];
        bool invalid_gpt_param = false;
        if(gpt_params_find_arg(argc, argv, argv[i], gpt_params, i, invalid_gpt_param)) {
            if (invalid_gpt_param) {
                fprintf(stderr, "error: invalid argument: %s\n", arg.c_str());
                retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
                exit(1);
            }
            // option was parsed by gpt_params_find_arg
        } else if (arg == "--context-file") {
            if (++i >= argc) {
                fprintf(stderr, "error: missing argument for --context-file\n");
                retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
                exit(1);
            }
            std::ifstream file(argv[i]);
            if (!file) {
                fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
                retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
                exit(1);
            }
            // store the external file name in params
            retrieval_params.context_files.push_back(argv[i]);
        } else if (arg == "--chunk-size") {
            if (++i >= argc) {
                fprintf(stderr, "error: missing argument for --chunk-size\n");
                retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
                exit(1);
            }
            retrieval_params.chunk_size = std::stoi(argv[i]);
        } else if (arg == "--chunk-separator") {
            if (++i >= argc) {
                fprintf(stderr, "error: missing argument for --chunk-separator\n");
                retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
                exit(1);
            }
            retrieval_params.chunk_separator = argv[i];
        } else {
            // unknown argument
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
            retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
            exit(1);
        }
        i++;
    }
}

struct chunk {
    // filename
    std::string filename;
    // original file position
    size_t filepos;
    // original text data
    std::string textdata = "";
    // tokenized text data
    std::vector<llama_token> tokens;
    // embedding
    std::vector<float> embedding;
};

// chunk file data to chunks of size >= chunk_size
// chunk_separator is the separator between chunks
static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
    std::vector<chunk> chunks;
    std::ifstream f(filename.c_str());

    if (!f.is_open()) {
        fprintf(stderr, "Error: could not open file %s\n", filename.c_str());
        return chunks;
    }

    chunk current_chunk;
    char buffer[1024];
    int64_t filepos = 0;
    std::string current = "";
    while (f.read(buffer, 1024)) {
        current += std::string(buffer, f.gcount());
        size_t pos;
        while ((pos = current.find(chunk_separator)) != std::string::npos) {
            current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
            if ((int) current_chunk.textdata.size() > chunk_size) {
                // save chunk
                current_chunk.filepos = filepos;
                current_chunk.filename = filename;
                chunks.push_back(current_chunk);
                // update filepos
                filepos += (int) current_chunk.textdata.size();
                // reset current_chunk
                current_chunk = chunk();
            }
            current = current.substr(pos + chunk_separator.size());
        }

    }
    // add leftover data to last chunk
    if (current_chunk.textdata.size() > 0) {
        if (chunks.empty()) {
            current_chunk.filepos = filepos;
            current_chunk.filename = filename;
            chunks.push_back(current_chunk);
        } else {
            chunks.back().textdata += current_chunk.textdata;
        }
    }
    f.close();
    return chunks;
}

static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
    for (size_t i = 0; i < tokens.size(); i++) {
        llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
    }
}

static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
    // clear previous kv_cache values (irrelevant for embeddings)
    llama_kv_cache_clear(ctx);

    // run model
    fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
    if (llama_decode(ctx, batch) < 0) {
        fprintf(stderr, "%s : failed to decode\n", __func__);
    }

    for (int i = 0; i < batch.n_tokens; i++) {
        if (!batch.logits[i]) {
            continue;
        }

        // try to get sequence embeddings - supported only when pooling_type is not NONE
        const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
        if (embd == NULL) {
            embd = llama_get_embeddings_ith(ctx, i);
            if (embd == NULL) {
                fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
                continue;
            }
        }

        float * out = output + batch.seq_id[i][0] * n_embd;
        llama_embd_normalize(embd, out, n_embd);
    }
}

int main(int argc, char ** argv) {
    gpt_params params;
    retrieval_params retrieval_params;

    retrieval_params_parse(argc, argv, params, retrieval_params);

    // For BERT models, batch size must be equal to ubatch size
    params.n_ubatch = params.n_batch;

    if (retrieval_params.chunk_size <= 0) {
        fprintf(stderr, "chunk_size must be positive\n");
        return 1;
    }
    if (retrieval_params.context_files.empty()) {
        fprintf(stderr, "context_files must be specified\n");
        return 1;
    }
    params.embedding = true;

    print_build_info();

    printf("processing files:\n");
    for (auto & context_file : retrieval_params.context_files) {
        printf("%s\n", context_file.c_str());
    }

    std::vector<chunk> chunks;
    for (auto & context_file : retrieval_params.context_files) {
        std::vector<chunk> file_chunk = chunk_file(context_file, retrieval_params.chunk_size, retrieval_params.chunk_separator);
        chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
    }
    printf("Number of chunks: %ld\n", chunks.size());

    llama_backend_init();
    llama_numa_init(params.numa);

    llama_model * model;
    llama_context * ctx;

    // load the model
    std::tie(model, ctx) = llama_init_from_gpt_params(params);
    if (model == NULL) {
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
        return 1;
    }

    const int n_ctx_train = llama_n_ctx_train(model);
    const int n_ctx = llama_n_ctx(ctx);

    if (n_ctx > n_ctx_train) {
        fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
                __func__, n_ctx_train, n_ctx);
    }

    // print system information
    {
        fprintf(stderr, "\n");
        fprintf(stderr, "%s\n", get_system_info(params).c_str());
    }

    // max batch size
    const uint64_t n_batch = params.n_batch;
    GGML_ASSERT(params.n_batch >= params.n_ctx);

    // tokenize the prompts and trim
    for (auto & chunk : chunks) {
        auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
        if (inp.size() > n_batch) {
            fprintf(stderr, "%s: error: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
                    __func__, (long long int) inp.size(), (long long int) n_batch);
            return 1;
        }
        // add eos if not present
        if (inp.empty() || inp.back() != llama_token_eos(model)) {
            inp.push_back(llama_token_eos(model));
        }
        chunk.tokens = inp;
    }

    // tokenization stats
    if (params.verbose_prompt) {
        for (int i = 0; i < (int) chunks.size(); i++) {
            fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
            fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
            for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
                fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
            }
            fprintf(stderr, "\n\n");
        }
    }

    // initialize batch
    const int n_chunks = chunks.size();
    struct llama_batch batch = llama_batch_init(n_batch, 0, 1);

    // allocate output
    const int n_embd = llama_n_embd(model);
    std::vector<float> embeddings(n_chunks * n_embd, 0);
    float * emb = embeddings.data();

    // break into batches
    int p = 0; // number of prompts processed already
    int s = 0; // number of prompts in current batch
    for (int k = 0; k < n_chunks; k++) {
        // clamp to n_batch tokens
        auto & inp = chunks[k].tokens;

        const uint64_t n_toks = inp.size();

        // encode if at capacity
        if (batch.n_tokens + n_toks > n_batch) {
            float * out = emb + p * n_embd;
            batch_decode(ctx, batch, out, s, n_embd);
            llama_batch_clear(batch);
            p += s;
            s = 0;
        }

        // add to batch
        batch_add_seq(batch, inp, s);
        s += 1;
    }

    // final batch
    float * out = emb + p * n_embd;
    batch_decode(ctx, batch, out, s, n_embd);

    // save embeddings to chunks
    for (int i = 0; i < n_chunks; i++) {
        chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
        // clear tokens as they are no longer needed
        chunks[i].tokens.clear();
    }

    // start loop, receive query and return top k similar chunks based on cosine similarity
    std::string query;
    while (true) {
        printf("Enter query: ");
        std::getline(std::cin, query);
        std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);

        struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
        batch_add_seq(query_batch, query_tokens, 0);

        std::vector<float> query_emb(n_embd, 0);
        batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);

        llama_batch_clear(query_batch);

        // compute cosine similarities
        {
            std::vector<std::pair<int, float>> similarities;
            for (int i = 0; i < n_chunks; i++) {
                float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
                similarities.push_back(std::make_pair(i, sim));
            }

            // sort similarities
            std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
                return a.second > b.second;
            });

            printf("Top %d similar chunks:\n", params.sparams.top_k);
            for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
                printf("filename: %s\n", chunks[similarities[i].first].filename.c_str());
                printf("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
                printf("similarity: %f\n", similarities[i].second);
                printf("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
                printf("--------------------\n");
            }
        }
    }

    // clean up
    llama_print_timings(ctx);
    llama_free(ctx);
    llama_free_model(model);
    llama_backend_free();
}