File size: 37,360 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
#include "common.cuh"
#include "fattn.cuh"

#include <cstdint>

#if FP16_MMA_AVAILABLE
#include <mma.h>
#endif

#define FATTN_KQ_STRIDE       256
#define HALF_MAX_HALF         __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
#define SOFTMAX_FTZ_THRESHOLD -20.0f                   // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.

template<int D, int parallel_blocks> // D == head size
__launch_bounds__(((D + WARP_SIZE - 1) / WARP_SIZE)*WARP_SIZE, 1)
static __global__ void flash_attn_vec_ext_f16(
        const char * __restrict__ Q,
        const char * __restrict__ K,
        const char * __restrict__ V,
        const char * __restrict__ mask,
        float      * __restrict__ dst,
        float2     * __restrict__ dst_meta,
        const float scale,
        const int ne00,
        const int ne01,
        const int ne02,
        const int ne03,
        const int ne10,
        const int ne11,
        const int ne12,
        const int ne13,
        const int ne31,
        const int nb31,
        const int nb01,
        const int nb02,
        const int nb03,
        const int nb11,
        const int nb12,
        const int nb13,
        const int ne0,
        const int ne1,
        const int ne2,
        const int ne3) {
#if FP16_AVAILABLE
    //In this kernel Q, K, V are matrices while i, j, k are matrix indices.

    const int ic = blockIdx.x / parallel_blocks; // Index of the Q/QKV column to work on.
    const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.

    const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
    const float2 * Q_f2  = (const float2 *) (Q    + nb02* blockIdx.y              + nb01*ic);
    const half2  * K_h2  = (const half2  *) (K    + nb12*(blockIdx.y / gqa_ratio));
    const half   * V_h   = (const half   *) (V    + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
    const half   * maskh = (const half   *)  mask + ne11*ic;

    const int stride_KV  = nb11 / sizeof(half);
    const int stride_KV2 = nb11 / sizeof(half2);

    constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
    const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
    __builtin_assume(tid < nwarps*WARP_SIZE);

    __shared__ half KQ[nwarps*WARP_SIZE];
    KQ[tid] = -INFINITY;
    half2 * KQ2 = (half2 *) KQ;

    half kqmax = -HALF_MAX_HALF;
    half kqsum = 0.0f;

    __shared__ half kqmax_shared[WARP_SIZE];
    __shared__ half kqsum_shared[WARP_SIZE];
    if (threadIdx.y == 0) {
        kqmax_shared[threadIdx.x] = -HALF_MAX_HALF;
        kqsum_shared[threadIdx.x] = 0.0f;
    }
    __syncthreads();

    // Convert Q to half2 and store in registers:
    half2 Q_h2[(D/2 + WARP_SIZE - 1) / WARP_SIZE];
#pragma unroll
    for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
        const int i = i0 + threadIdx.x;
        if (i0 + WARP_SIZE > D/2 && i >= D/2) {
            break;
        }

        Q_h2[i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(Q_f2[i].x, Q_f2[i].y);
    }

    half2 VKQ = make_half2(0.0f, 0.0f); // Each thread calculates a single VKQ value.

    const int k_start  = parallel_blocks == 1 ? 0 : ip*D;
    for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
        // Calculate KQ tile and keep track of new maximum KQ values:
        half kqmax_new = kqmax;
#pragma unroll
        for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
            const int i_KQ = i_KQ_0 + threadIdx.y;

            if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
                break;
            }

            half2 sum2 = make_half2(0.0f, 0.0f);
#pragma unroll
            for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
                const int k_KQ = k_KQ_0 + threadIdx.x;
                if (k_KQ_0 + WARP_SIZE > D/2 && k_KQ >= D/2) {
                    break;
                }

                const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
                sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
            }

            sum2 = warp_reduce_sum(sum2);
            half sum = __low2half(sum2) + __high2half(sum2);
            sum += mask ? maskh[k_VKQ_0 + i_KQ] : __float2half(0.0f);
            kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
            if (threadIdx.x == 0) {
                KQ[i_KQ] = sum;
            }
        }

        kqmax_new = warp_reduce_max(kqmax_new);
        if (threadIdx.x == 0) {
            kqmax_shared[threadIdx.y] = kqmax_new;
        }
        __syncthreads();
        kqmax_new = kqmax_shared[threadIdx.x];
        kqmax_new = warp_reduce_max(kqmax_new);

        const half KQ_max_scale = hexp(kqmax - kqmax_new);
        kqmax = kqmax_new;

        const half val = hexp(KQ[tid] - kqmax);
        kqsum = kqsum*KQ_max_scale + val;
        KQ[tid] = val;

        VKQ *= __half2half2(KQ_max_scale);

        __syncthreads();

        if (tid < D) {
#pragma unroll
            for (int k0 = 0; k0 < D; k0 += 2) {
                if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
                    break;
                }

                half2 V_k;
                reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
                reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
                VKQ += V_k*KQ2[k0/2];
            }
        }

        __syncthreads();
    }

    if (tid >= D) {
        kqsum = 0.0f;
    }

    kqsum = warp_reduce_sum(kqsum);
    if (threadIdx.x == 0) {
        kqsum_shared[threadIdx.y] = kqsum;
    }
    __syncthreads();
    kqsum = kqsum_shared[threadIdx.x];
    kqsum = warp_reduce_sum(kqsum);

    if (tid >= D) {
        return;
    }

    half dst_val = (__low2half(VKQ) + __high2half(VKQ));
    if (parallel_blocks == 1) {
        dst_val /= kqsum;
    }
    dst[D*gridDim.y*blockIdx.x + D*blockIdx.y + tid] = dst_val;

    if (parallel_blocks == 1 || tid != 0) {
        return;
    }
    dst_meta[ic*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax, kqsum);
#else
   NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}

// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
__launch_bounds__(nwarps*WARP_SIZE, 1)
static __global__ void flash_attn_ext_f16(
        const char * __restrict__ Q,
        const char * __restrict__ K,
        const char * __restrict__ V,
        const char * __restrict__ mask,
        float      * __restrict__ dst,
        float2     * __restrict__ dst_meta,
        const float scale,
        const int ne00,
        const int ne01,
        const int ne02,
        const int ne03,
        const int ne10,
        const int ne11,
        const int ne12,
        const int ne13,
        const int ne31,
        const int nb31,
        const int nb01,
        const int nb02,
        const int nb03,
        const int nb11,
        const int nb12,
        const int nb13,
        const int ne0,
        const int ne1,
        const int ne2,
        const int ne3) {
#if FP16_MMA_AVAILABLE
    //In this kernel Q, K, V are matrices while i, j, k are matrix indices.

    const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
    const int ip  =        blockIdx.x % parallel_blocks;  // Index in group of blocks running for the same column in parallel.

    static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
    static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
    constexpr int frag_m = ncols == 8 ? 32 : 16;
    constexpr int frag_n = ncols == 8 ?  8 : 16;
    static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
    typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a,    frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
    typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a,    frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
    typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b,    frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
    typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t>                      frag_c_KQ;
    typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half>                          frag_c_VKQ;

    constexpr int KQ_stride_tc  = nwarps*frag_m; // Number of KQ rows calculated in parallel.
    constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
    static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");

    // Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
    constexpr int D_padded = D + 8;
    constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
    constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);

    const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
    const float * Q_f   = (const float *) (Q + nb02* blockIdx.y              + nb01*ic0);
    const half  * K_h   = (const half  *) (K + nb12*(blockIdx.y / gqa_ratio));
    const half  * V_h   = (const half  *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
    const half  * maskh = (const half  *)  mask + (nb31/sizeof(half))* ic0;
    const half2 * mask2 = (const half2 *)  mask + (nb31/sizeof(half))*(ic0/2);

    const int stride_Q  = nb01 / sizeof(float);
    const int stride_KV = nb11 / sizeof(half);

    frag_b Q_b[D/16][ncols/frag_n];

    // A single buffer for temporarily holding tiles of KQ and VKQ parts:
    constexpr int mem_KQ = ncols*kqs_padded*kqar;
    constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
    __shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
    float * KQ_f = (float *) KQ;
    half2 * KQ2 = (half2 *) KQ;

    float    KQ_rowsum_f[ncols/nwarps] = {0.0f};
    float       KQ_max_f[ncols/nwarps];
    float KQ_max_scale_f[ncols/nwarps] = {0.0f};

#pragma unroll
    for (int j = 0; j < ncols/nwarps; ++j) {
        KQ_max_f[j] = -FLT_MAX/2.0f;
    }

    half2    KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
    half2       KQ_max_h2[ncols/nwarps];
    half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};

#pragma unroll
    for (int j = 0; j < ncols/nwarps; ++j) {
        KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
    }

    __shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
    half2 * VKQ2 = (half2 *) VKQ;
#pragma unroll
    for (int j0 = 0; j0 < ncols; j0 += nwarps) {
        const int j = j0 + threadIdx.y;
#pragma unroll
        for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
            const int i = i0 + threadIdx.x;
            if (i0 + WARP_SIZE > D/2 && i >= D/2) {
                break;
            }
            VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
        }
    }

    // Convert Q to half and apply scale, temporarily store in KQ:
#pragma unroll
    for (int j0 = 0; j0 < ncols; j0 += nwarps) {
        const int j = j0 + threadIdx.y;
#pragma unroll
        for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
            const int i = i0 + threadIdx.x;
            if (i0 + WARP_SIZE > D && i >= D) {
                break;
            }
            KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
        }
    }

    __syncthreads();

    // Load Q into tensor core fragments/registers since it will be used frequently:
#pragma unroll
    for (int i0 = 0; i0 < D; i0 += 16) {
#pragma unroll
        for (int j0 = 0; j0 < ncols; j0 += frag_n) {
            nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
        }
    }

    __syncthreads();

    // Iterate over ne11 == previous tokens:
    for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
        // Calculate tile of KQ:
#pragma unroll
        for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
            frag_c_KQ KQ_c[ncols/frag_n];
#pragma unroll
            for (int j = 0; j < ncols/frag_n; ++j) {
                nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
            }
#pragma unroll
            for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
                frag_a_K K_a;
                nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
#pragma unroll
                for (int j = 0; j < ncols/frag_n; ++j) {
                    nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
                }
            }
#pragma unroll
            for (int j0 = 0; j0 < ncols; j0 += frag_n) {
                nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
            }
        }

        __syncthreads();

        // Calculate softmax for each KQ column using the current max. value.
        // The divisor is stored in KQ_rowsum and will be applied at the end.
#pragma unroll
        for (int j0 = 0; j0 < ncols; j0 += nwarps) {
            const int j = j0 + threadIdx.y;

            if (std::is_same<KQ_acc_t, float>::value) {
                float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
#pragma unroll
                for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
                    const int k = k0 + threadIdx.x;

                    KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
                }

                float KQ_max_new = KQ_max_f[j0/nwarps];
#pragma unroll
                for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
                    const int k = k0 + threadIdx.x;

                    KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
                    KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
                }
                KQ_max_new = warp_reduce_max(KQ_max_new);

                const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
                KQ_max_scale_f[j0/nwarps] = expf(diff);
                if (diff <= SOFTMAX_FTZ_THRESHOLD) {
                    KQ_max_scale_f[j0/nwarps] = 0.0f;
                }
                KQ_max_f[j0/nwarps] = KQ_max_new;

                float KQ_rowsum_add = 0.0f;
#pragma unroll
                for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
                    const int k = k0 + threadIdx.x;

                    const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
                    KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
                    if (diff <= SOFTMAX_FTZ_THRESHOLD) {
                        KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
                    }
                    KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
                    KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
                }
                KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);

                // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
                KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
            } else {
                half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
#pragma unroll
                for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
                    const int k = k0 + threadIdx.x;

                    KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
                }

                half2 KQ_max_new = KQ_max_h2[j0/nwarps];
#pragma unroll
                for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
                    const int k = k0 + threadIdx.x;

                    KQ2_tmp[k0/WARP_SIZE] += mask ? mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
                    KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
                }
                KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
                const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
                KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
                const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
                *((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
                KQ_max_h2[j0/nwarps] = KQ_max_new;

                half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
#pragma unroll
                for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
                    const int k = k0 + threadIdx.x;

                    const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
                    KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
                    const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
                    *((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
                    KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
                    KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
                }
                KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);

                // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
                KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
            }
        }

        __syncthreads();

        frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
#pragma unroll
        for (int j0 = 0; j0 < ncols; j0 += frag_n) {
#pragma unroll
            for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
                const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
                nvcuda::wmma::load_matrix_sync(
                    KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
                    KQ + j0*(kqar*kqs_padded) + k,
                    kqar*kqs_padded);
            }
        }

        frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
#pragma unroll
        for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
#pragma unroll
            for (int j = 0; j < ncols/frag_n; ++j) {
                nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
            }

#pragma unroll
            for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
                const int k = k0 + (threadIdx.y % VKQ_ratio)*16;

                frag_a_V v_a;
                nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
#pragma unroll
                for (int j = 0; j < ncols/frag_n; ++j) {
                    nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
                }
            }
        }

        __syncthreads();

        const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
#pragma unroll
        for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
#pragma unroll
            for (int j0 = 0; j0 < ncols; j0 += frag_n) {
                nvcuda::wmma::store_matrix_sync(
                    KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
                    VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
                    D_padded, nvcuda::wmma::mem_col_major);
            }
        }

        __syncthreads();

#pragma unroll
        for (int j0 = 0; j0 < ncols; j0 += nwarps) {
            const int j = j0 + threadIdx.y;

            half2 VKQ_scale;
            if (std::is_same<KQ_acc_t, float>::value) {
                VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
            } else {
                VKQ_scale = KQ_max_scale_h2[j0/nwarps];
            }

#pragma unroll
            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
                const int i = i0 + threadIdx.x;
                if (i0 + WARP_SIZE > D/2 && i >= D/2) {
                    break;
                }

                half2 VKQ_add = make_half2(0.0f, 0.0f);
#pragma unroll
                for (int l = 0; l < VKQ_ratio; ++l) {
                    VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
                }
                VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
            }
        }

        __syncthreads();
    }

#pragma unroll
    for (int j0 = 0; j0 < ncols; j0 += nwarps) {
        const int j_VKQ = j0 + threadIdx.y;
        if (ic0 + j_VKQ >= ne01) {
            return;
        }
        const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;

        float KQ_rowsum_j;
        if (std::is_same<KQ_acc_t, float>::value) {
            KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
        } else {
            KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
        }

#pragma unroll
        for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
            const int i = i0 + threadIdx.x;
            if (i0 + WARP_SIZE > D && i >= D) {
                break;
            }
            float dst_val = VKQ[j_VKQ*D_padded + i];
            if (parallel_blocks == 1) {
                dst_val /= KQ_rowsum_j;
            }
            dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
        }

        if (parallel_blocks == 1 || threadIdx.x != 0) {
            continue;
        }

        float2 dst_meta_val;
        if (std::is_same<KQ_acc_t, float>::value) {
            dst_meta_val.x = KQ_max_f[j0/nwarps];
        } else {
            dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
        }
        dst_meta_val.y = KQ_rowsum_j;
        dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
    }
#else
   NO_DEVICE_CODE;
#endif // FP16_MMA_AVAILABLE
}

template<int D, int parallel_blocks> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_combine_results(
        const float  * __restrict__ VKQ_parts,
        const float2 * __restrict__ VKQ_meta,
        float * __restrict__ dst) {
#if FP16_AVAILABLE
    VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
    VKQ_meta  += parallel_blocks   * gridDim.y*blockIdx.x;
    dst       +=                 D * gridDim.y*blockIdx.x;

    const int tid = threadIdx.x;
    __builtin_assume(tid < D);

    __shared__ float2 meta[parallel_blocks];
    if (tid < 2*parallel_blocks) {
        ((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
    }

    __syncthreads();

    float kqmax = meta[0].x;
#pragma unroll
    for (int l = 1; l < parallel_blocks; ++l) {
        kqmax = max(kqmax, meta[l].x);
    }

    float VKQ_numerator   = 0.0f;
    float VKQ_denominator = 0.0f;
#pragma unroll
    for (int l = 0; l < parallel_blocks; ++l) {
        const float diff = meta[l].x - kqmax;
        const float KQ_max_scale = expf(diff);
        const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
        *((uint32_t *) &KQ_max_scale) &= ftz_mask;

        VKQ_numerator   += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
        VKQ_denominator += KQ_max_scale * meta[l].y;
    }

    dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
#else
   NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}

constexpr int get_max_power_of_2(int x) {
    return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
}

static_assert(get_max_power_of_2(1) == 1, "Test failed.");
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
static_assert(get_max_power_of_2(6) == 2, "Test failed.");

// Number of VKQ rows calculated in parallel:
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
    return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
}

static_assert(get_VKQ_stride(128, 1, 32) ==  32, "Test failed.");
static_assert(get_VKQ_stride(128, 2, 32) ==  64, "Test failed.");
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
static_assert(get_VKQ_stride( 64, 1, 32) ==  32, "Test failed.");
static_assert(get_VKQ_stride( 64, 2, 32) ==  64, "Test failed.");
static_assert(get_VKQ_stride( 64, 4, 32) ==  64, "Test failed.");
static_assert(get_VKQ_stride( 80, 1, 16) ==  16, "Test failed.");
static_assert(get_VKQ_stride( 80, 2, 16) ==  16, "Test failed.");
static_assert(get_VKQ_stride( 80, 4, 16) ==  16, "Test failed.");

template <int D, int parallel_blocks> void launch_fattn_vec_f16(
        const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
        ggml_cuda_pool & pool, cudaStream_t main_stream
) {
    ggml_cuda_pool_alloc<float>  dst_tmp(pool);
    ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);

    if (parallel_blocks > 1) {
        dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
        dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
    }

    constexpr int  nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
    const     dim3 block_dim(WARP_SIZE, nwarps, 1);
    const     dim3 blocks_num(parallel_blocks*Q->ne[1], Q->ne[2], Q->ne[3]);
    const     int  shmem = 0;

    float scale;
    memcpy(&scale, KQV->op_params, sizeof(float));

    flash_attn_vec_ext_f16<D, parallel_blocks>
        <<<blocks_num, block_dim, shmem, main_stream>>> (
                (const char *) Q->data,
                (const char *) K->data,
                (const char *) V->data,
                mask ? ((const char *) mask->data) : nullptr,
                parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
                scale,
                Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
                K->ne[0], K->ne[1], K->ne[2], K->ne[3],
                mask ? mask->ne[1] : 0, mask ?  mask->nb[1] : 0,
                Q->nb[1], Q->nb[2], Q->nb[3],
                K->nb[1], K->nb[2], K->nb[3],
                KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
                );
    CUDA_CHECK(cudaGetLastError());

    if (parallel_blocks == 1) {
        return;
    }

    const dim3 block_dim_combine(D, 1, 1);
    const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
    const int  shmem_combine = 0;

    flash_attn_combine_results<D, parallel_blocks>
        <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
        (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
    CUDA_CHECK(cudaGetLastError());
}

template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename KQ_acc_t> void launch_fattn_f16_impl(
        const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
        ggml_cuda_pool & pool, cudaStream_t main_stream
) {
    ggml_cuda_pool_alloc<float>  dst_tmp(pool);
    ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);

    if (parallel_blocks > 1) {
        dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
        dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
    }

    constexpr int  frag_m = (cols_per_block) == 8 && (D) % 32 == 0 ? 32 : 16;
    const     dim3 block_dim(WARP_SIZE, nwarps, 1);
    const     dim3 blocks_num(parallel_blocks*(Q->ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]);
    const     int  shmem = 0;

    float scale;
    memcpy(&scale, KQV->op_params, sizeof(float));

    flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>
        <<<blocks_num, block_dim, shmem, main_stream>>> (
                (const char *) Q->data,
                (const char *) K->data,
                (const char *) V->data,
                mask ? ((const char *) mask->data) : nullptr,
                (parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
                scale,
                Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
                K->ne[0], K->ne[1], K->ne[2], K->ne[3],
                mask ? mask->ne[1] : 0, mask ?  mask->nb[1] : 0,
                Q->nb[1], Q->nb[2], Q->nb[3],
                K->nb[1], K->nb[2], K->nb[3],
                KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
                );
    CUDA_CHECK(cudaGetLastError());

    if ((parallel_blocks) == 1) {
        return;
    }

    const dim3 block_dim_combine(D, 1, 1);
    const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
    const int  shmem_combine = 0;

    flash_attn_combine_results<D, parallel_blocks>
        <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
        (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
    CUDA_CHECK(cudaGetLastError());
}

template <int D, int cols_per_block, int nwarps, typename KQ_acc_t> void launch_fattn_f16(
        const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
        const int nsm, ggml_cuda_pool & pool, cudaStream_t main_stream
) {
    const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];

    if (4*blocks_num_pb1 < 2*nsm) {
        launch_fattn_f16_impl<D, cols_per_block, nwarps, 4, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
        return;
    }
    if (2*blocks_num_pb1 < 2*nsm) {
        launch_fattn_f16_impl<D, cols_per_block, nwarps, 2, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
        return;
    }
    launch_fattn_f16_impl<D, cols_per_block, nwarps, 1, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
}

void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * Q = dst->src[0];
    const ggml_tensor * K = dst->src[1];
    const ggml_tensor * V = dst->src[2];

    const ggml_tensor * mask = dst->src[3];

    ggml_tensor * KQV = dst;

    GGML_ASSERT(Q->type == GGML_TYPE_F32);
    GGML_ASSERT(K->type == GGML_TYPE_F16);
    GGML_ASSERT(V->type == GGML_TYPE_F16);
    GGML_ASSERT(KQV->type == GGML_TYPE_F32);

    GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
    GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
                                "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");

    GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");

    ggml_cuda_set_device(ctx.device);

    const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;

    const int32_t precision = KQV->op_params[1];

    if (precision != GGML_PREC_DEFAULT) {
        if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
            constexpr int cols_per_block = 16;
            constexpr int nwarps         =  4;
            switch (Q->ne[0]) {
                case 64:
                    launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                case 80:
                    launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                case 96:
                    launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                case 112:
                    launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                case 128:
                    launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                case 256:
                    launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                default:
                    GGML_ASSERT(false);
                    break;
            }
        } else {
            constexpr int cols_per_block = 32;
            constexpr int nwarps         =  4;
            switch (Q->ne[0]) {
                case 64:
                    launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                case 80:
                    launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                case 96:
                    launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                case 112:
                    launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                case 128:
                    launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                    break;
                // case 256:
                //     launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                //     break;
                default:
                    GGML_ASSERT(false);
                    break;
            }
        }
        return;
    }

    if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
        constexpr int parallel_blocks = 4;
        switch (Q->ne[0]) {
            case 64:
                launch_fattn_vec_f16< 64, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
                break;
            case 128:
                launch_fattn_vec_f16<128, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
                break;
            case 256:
                launch_fattn_vec_f16<256, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
                break;
            default:
                GGML_ASSERT(false);
                break;
        }
        return;
    }

    if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
        constexpr int cols_per_block = 8;
        constexpr int nwarps         = 4;
        switch (Q->ne[0]) {
            case 64:
                launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            case 96:
                launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            case 128:
                launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            case 256:
                launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            default:
                GGML_ASSERT(false);
                break;
        }
        return;
    }

    if (Q->ne[1] <= 32) {
        constexpr int cols_per_block = 16;
        constexpr int nwarps         =  4;
        switch (Q->ne[0]) {
            case 64:
                launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            case 80:
                launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            case 96:
                launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            case 112:
                launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            case 128:
                launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            case 256:
                launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
                break;
            default:
                GGML_ASSERT(false);
                break;
        }
        return;
    }

    constexpr int cols_per_block = 32;
    constexpr int nwarps         =  4;
    switch (Q->ne[0]) {
        case 64:
            launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
            break;
        case 80:
            launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
            break;
        case 96:
            launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
            break;
        case 112:
            launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
            break;
        case 128:
            launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
            break;
        case 256:
            launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
            break;
        default:
            GGML_ASSERT(false);
            break;
    }
    return;
}