File size: 8,875 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// SPDX-License-Identifier: Apache-2.0

#include "gtest/gtest.h"

#include "kompute/Kompute.hpp"
#include "kompute/logger/Logger.hpp"

#include "shaders/Utils.hpp"

TEST(TestMultipleAlgoExecutions, TestEndToEndFunctionality)
{

    kp::Manager mgr;

    // Default tensor constructor simplifies creation of float values
    auto tensorInA = mgr.tensor({ 2., 2., 2. });
    auto tensorInB = mgr.tensor({ 1., 2., 3. });
    // Explicit type constructor supports int, in32, double, float and int
    auto tensorOutA = mgr.tensorT<uint32_t>({ 0, 0, 0 });
    auto tensorOutB = mgr.tensorT<uint32_t>({ 0, 0, 0 });

    std::string shader = (R"(
        #version 450

        layout (local_size_x = 1) in;

        // The input tensors bind index is relative to index in parameter passed
        layout(set = 0, binding = 0) buffer buf_in_a { float in_a[]; };
        layout(set = 0, binding = 1) buffer buf_in_b { float in_b[]; };
        layout(set = 0, binding = 2) buffer buf_out_a { uint out_a[]; };
        layout(set = 0, binding = 3) buffer buf_out_b { uint out_b[]; };

        // Kompute supports push constants updated on dispatch
        layout(push_constant) uniform PushConstants {
            float val;
        } push_const;

        // Kompute also supports spec constants on initalization
        layout(constant_id = 0) const float const_one = 0;

        void main() {
            uint index = gl_GlobalInvocationID.x;
            out_a[index] += uint( in_a[index] * in_b[index] );
            out_b[index] += uint( const_one * push_const.val );
        }
    )");

    std::vector<std::shared_ptr<kp::Tensor>> params = {
        tensorInA, tensorInB, tensorOutA, tensorOutB
    };

    kp::Workgroup workgroup({ 3, 1, 1 });
    std::vector<float> specConsts({ 2 });
    std::vector<float> pushConstsA({ 2.0 });
    std::vector<float> pushConstsB({ 3.0 });

    auto algorithm = mgr.algorithm(
      params, compileSource(shader), workgroup, specConsts, pushConstsA);

    // 3. Run operation with string shader synchronously
    mgr.sequence()
      ->record<kp::OpTensorSyncDevice>(params)
      ->record<kp::OpAlgoDispatch>(algorithm)
      ->eval()
      ->record<kp::OpAlgoDispatch>(algorithm, pushConstsB)
      ->eval();

    auto sq = mgr.sequence();
    sq->evalAsync<kp::OpTensorSyncLocal>(params);

    sq->evalAwait();

    EXPECT_EQ(tensorOutA->vector(), std::vector<uint32_t>({ 4, 8, 12 }));
    EXPECT_EQ(tensorOutB->vector(), std::vector<uint32_t>({ 10, 10, 10 }));
}

TEST(TestMultipleAlgoExecutions, SingleSequenceRecord)
{

    kp::Manager mgr;

    std::shared_ptr<kp::TensorT<float>> tensorA = mgr.tensor({ 0, 0, 0 });

    std::string shader(R"(
      #version 450
      layout (local_size_x = 1) in;
      layout(set = 0, binding = 0) buffer a { float pa[]; };
      void main() {
          uint index = gl_GlobalInvocationID.x;
          pa[index] = pa[index] + 1;
      })");

    std::vector<uint32_t> spirv = compileSource(shader);

    {
        // A sharedMemoryBarrier is required as the shader is not thread-safe:w
        std::shared_ptr<kp::OpMemoryBarrier> shaderBarrier{
            new kp::OpMemoryBarrier({ tensorA },
                                    vk::AccessFlagBits::eTransferRead,
                                    vk::AccessFlagBits::eShaderWrite,
                                    vk::PipelineStageFlagBits::eComputeShader,
                                    vk::PipelineStageFlagBits::eComputeShader)
        };

        mgr.sequence()
          ->record<kp::OpTensorSyncDevice>({ tensorA })
          ->record<kp::OpAlgoDispatch>(mgr.algorithm({ tensorA }, spirv))
          ->record(shaderBarrier)
          ->record<kp::OpAlgoDispatch>(mgr.algorithm({ tensorA }, spirv))
          ->record(shaderBarrier)
          ->record<kp::OpAlgoDispatch>(mgr.algorithm({ tensorA }, spirv))
          ->record<kp::OpTensorSyncLocal>({ tensorA })
          ->eval();
    }

    EXPECT_EQ(tensorA->vector(), std::vector<float>({ 3, 3, 3 }));
}

TEST(TestMultipleAlgoExecutions, MultipleCmdBufRecords)
{
    kp::Manager mgr;

    std::shared_ptr<kp::TensorT<float>> tensorA = mgr.tensor({ 0, 0, 0 });

    std::string shader(R"(
      #version 450
      layout (local_size_x = 1) in;
      layout(set = 0, binding = 0) buffer a { float pa[]; };
      void main() {
          uint index = gl_GlobalInvocationID.x;
          pa[index] = pa[index] + 1;
      })");

    std::vector<uint32_t> spirv = compileSource(shader);

    std::shared_ptr<kp::Algorithm> algorithm =
      mgr.algorithm({ tensorA }, spirv);

    std::shared_ptr<kp::Sequence> sq = mgr.sequence();

    mgr.sequence()->record<kp::OpTensorSyncDevice>({ tensorA })->eval();

    mgr.sequence()->record<kp::OpAlgoDispatch>(algorithm)->eval();

    mgr.sequence()->record<kp::OpAlgoDispatch>(algorithm)->eval();

    mgr.sequence()->record<kp::OpAlgoDispatch>(algorithm)->eval();

    mgr.sequence()->record<kp::OpTensorSyncLocal>({ tensorA })->eval();

    EXPECT_EQ(tensorA->vector(), std::vector<float>({ 3, 3, 3 }));
}

TEST(TestMultipleAlgoExecutions, MultipleSequences)
{

    kp::Manager mgr;

    std::shared_ptr<kp::TensorT<float>> tensorA = mgr.tensor({ 0, 0, 0 });

    std::string shader(R"(
      #version 450
      layout (local_size_x = 1) in;
      layout(set = 0, binding = 0) buffer a { float pa[]; };
      void main() {
          uint index = gl_GlobalInvocationID.x;
          pa[index] = pa[index] + 1;
      })");

    std::vector<uint32_t> spirv = compileSource(shader);

    std::shared_ptr<kp::Algorithm> algorithm =
      mgr.algorithm({ tensorA }, spirv);

    std::shared_ptr<kp::Sequence> sq = mgr.sequence();

    sq->record<kp::OpTensorSyncDevice>({ tensorA })->eval();

    sq->record<kp::OpAlgoDispatch>(algorithm)->eval();

    sq->record<kp::OpAlgoDispatch>(algorithm)->eval();

    sq->record<kp::OpAlgoDispatch>(algorithm)->eval();

    sq->record<kp::OpTensorSyncLocal>({ tensorA })->eval();

    EXPECT_EQ(tensorA->vector(), std::vector<float>({ 3, 3, 3 }));
}

TEST(TestMultipleAlgoExecutions, SingleRecordMultipleEval)
{
    kp::Manager mgr;

    std::shared_ptr<kp::TensorT<float>> tensorA = mgr.tensor({ 0, 0, 0 });

    std::string shader(R"(
      #version 450
      layout (local_size_x = 1) in;
      layout(set = 0, binding = 0) buffer a { float pa[]; };
      void main() {
          uint index = gl_GlobalInvocationID.x;
          pa[index] = pa[index] + 1;
      })");

    std::vector<uint32_t> spirv = compileSource(shader);

    std::shared_ptr<kp::Algorithm> algorithm =
      mgr.algorithm({ tensorA }, spirv);

    std::shared_ptr<kp::Sequence> sq = mgr.sequence();

    sq->record<kp::OpTensorSyncDevice>({ tensorA })->eval();

    sq->record<kp::OpAlgoDispatch>(algorithm)->eval()->eval()->eval();

    sq->record<kp::OpTensorSyncLocal>({ tensorA })->eval();

    EXPECT_EQ(tensorA->vector(), std::vector<float>({ 3, 3, 3 }));
}

TEST(TestMultipleAlgoExecutions, TestAlgorithmUtilFunctions)
{

    kp::Manager mgr;

    // Default tensor constructor simplifies creation of float values
    auto tensorInA = mgr.tensor({ 2., 2., 2. });
    auto tensorInB = mgr.tensor({ 1., 2., 3. });
    // Explicit type constructor supports int, in32, double, float and int
    auto tensorOutA = mgr.tensorT<uint32_t>({ 0, 0, 0 });
    auto tensorOutB = mgr.tensorT<uint32_t>({ 0, 0, 0 });

    std::string shader = (R"(
        #version 450

        layout (local_size_x = 1) in;

        // The input tensors bind index is relative to index in parameter passed
        layout(set = 0, binding = 0) buffer buf_in_a { float in_a[]; };
        layout(set = 0, binding = 1) buffer buf_in_b { float in_b[]; };
        layout(set = 0, binding = 2) buffer buf_out_a { uint out_a[]; };
        layout(set = 0, binding = 3) buffer buf_out_b { uint out_b[]; };

        // Kompute supports push constants updated on dispatch
        layout(push_constant) uniform PushConstants {
            float val;
        } push_const;

        // Kompute also supports spec constants on initalization
        layout(constant_id = 0) const float const_one = 0;

        void main() {
            uint index = gl_GlobalInvocationID.x;
            out_a[index] += uint( in_a[index] * in_b[index] );
            out_b[index] += uint( const_one * push_const.val );
        }
    )");

    std::vector<std::shared_ptr<kp::Tensor>> params = {
        tensorInA, tensorInB, tensorOutA, tensorOutB
    };

    kp::Workgroup workgroup({ 3, 1, 1 });
    std::vector<float> specConsts({ 2 });
    std::vector<float> pushConsts({ 2.0 });

    auto algorithm = mgr.algorithm(
      params, compileSource(shader), workgroup, specConsts, pushConsts);

    EXPECT_EQ(algorithm->getWorkgroup(), workgroup);
    EXPECT_EQ(algorithm->getPushConstants<float>(), pushConsts);
    EXPECT_EQ(algorithm->getSpecializationConstants<float>(), specConsts);
}