File size: 7,713 Bytes
4bdb245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// SPDX-License-Identifier: Apache-2.0

#include "gtest/gtest.h"

#include "kompute/Kompute.hpp"
#include "kompute/logger/Logger.hpp"

#include "shaders/Utils.hpp"

TEST(TestOpTensorCopy, CopyDeviceToDeviceTensor)
{

    kp::Manager mgr;

    std::vector<float> testVecA{ 1, 2, 3 };
    std::vector<float> testVecB{ 0, 0, 0 };

    std::shared_ptr<kp::TensorT<float>> tensorA = mgr.tensor(testVecA);
    std::shared_ptr<kp::TensorT<float>> tensorB = mgr.tensor(testVecB);

    EXPECT_TRUE(tensorA->isInit());
    EXPECT_TRUE(tensorB->isInit());

    mgr.sequence()
      ->eval<kp::OpTensorSyncDevice>({ tensorA, tensorB })
      ->eval<kp::OpTensorCopy>({ tensorA, tensorB })
      ->eval<kp::OpTensorSyncLocal>({ tensorA, tensorB });

    // Making sure the GPU holds the same vector
    EXPECT_EQ(tensorA->vector(), tensorB->vector());
}

TEST(TestOpTensorCopy, CopyDeviceToDeviceTensorMulti)
{

    kp::Manager mgr;

    std::vector<float> testVecA{ 2, 3, 4 };
    std::vector<float> testVecB{ 0, 0, 0 };
    std::vector<float> testVecC{ 0, 0, 0 };

    std::shared_ptr<kp::TensorT<float>> tensorA = mgr.tensor(testVecA);
    std::shared_ptr<kp::TensorT<float>> tensorB = mgr.tensor(testVecB);
    std::shared_ptr<kp::TensorT<float>> tensorC = mgr.tensor(testVecC);

    EXPECT_TRUE(tensorA->isInit());
    EXPECT_TRUE(tensorB->isInit());
    EXPECT_TRUE(tensorC->isInit());

    mgr.sequence()
      ->eval<kp::OpTensorSyncLocal>({ tensorA, tensorB, tensorC })
      ->eval<kp::OpTensorCopy>({ tensorA, tensorB, tensorC });

    EXPECT_EQ(tensorA->vector(), tensorB->vector());
    EXPECT_EQ(tensorA->vector(), tensorC->vector());

    // Making sure the GPU holds the same vector
    mgr.sequence()->eval<kp::OpTensorSyncLocal>({ tensorB, tensorC });

    EXPECT_EQ(tensorA->vector(), tensorB->vector());
    EXPECT_EQ(tensorA->vector(), tensorC->vector());
}

TEST(TestOpTensorCopy, CopyDeviceToHostTensor)
{

    kp::Manager mgr;

    std::vector<float> testVecA{ 3, 4, 5 };
    std::vector<float> testVecB{ 0, 0, 0 };

    std::shared_ptr<kp::TensorT<float>> tensorA = mgr.tensor(testVecA);
    std::shared_ptr<kp::TensorT<float>> tensorB =
      mgr.tensor(testVecB, kp::Tensor::TensorTypes::eHost);

    //  Only calling sync on device type tensor
    mgr.sequence()->eval<kp::OpTensorSyncDevice>({ tensorA });

    EXPECT_TRUE(tensorA->isInit());
    EXPECT_TRUE(tensorB->isInit());

    mgr.sequence()->eval<kp::OpTensorCopy>({ tensorA, tensorB });

    EXPECT_EQ(tensorA->vector(), tensorB->vector());

    // Making sure the GPU holds the same vector
    mgr.sequence()->eval<kp::OpTensorSyncLocal>({ tensorB });
    EXPECT_EQ(tensorA->vector(), tensorB->vector());
}

TEST(TestOpTensorCopy, CopyHostToDeviceTensor)
{

    kp::Manager mgr;

    std::vector<float> testVecA{ 4, 5, 6 };
    std::vector<float> testVecB{ 0, 0, 0 };

    std::shared_ptr<kp::TensorT<float>> tensorA =
      mgr.tensor(testVecA, kp::Tensor::TensorTypes::eHost);
    std::shared_ptr<kp::TensorT<float>> tensorB = mgr.tensor(testVecB);

    //  Only calling sync on device type tensor
    mgr.sequence()->eval<kp::OpTensorSyncDevice>({ tensorA, tensorB });

    EXPECT_TRUE(tensorA->isInit());
    EXPECT_TRUE(tensorB->isInit());

    mgr.sequence()->eval<kp::OpTensorCopy>({ tensorA, tensorB });

    EXPECT_EQ(tensorA->vector(), tensorB->vector());

    // Making sure the GPU holds the same vector
    mgr.sequence()->eval<kp::OpTensorSyncLocal>({ tensorB });
    EXPECT_EQ(tensorA->vector(), tensorB->vector());
}

TEST(TestOpTensorCopy, CopyHostToHostTensor)
{

    kp::Manager mgr;

    std::vector<float> testVecA{ 5, 6, 7 };
    std::vector<float> testVecB{ 0, 0, 0 };

    std::shared_ptr<kp::TensorT<float>> tensorA =
      mgr.tensor(testVecA, kp::Tensor::TensorTypes::eHost);
    std::shared_ptr<kp::TensorT<float>> tensorB =
      mgr.tensor(testVecB, kp::Tensor::TensorTypes::eHost);

    EXPECT_TRUE(tensorA->isInit());
    EXPECT_TRUE(tensorB->isInit());

    mgr.sequence()
      ->eval<kp::OpTensorSyncDevice>({ tensorA })
      ->eval<kp::OpTensorCopy>({ tensorA, tensorB });

    EXPECT_EQ(tensorA->vector(), tensorB->vector());

    // Making sure the GPU holds the same vector
    mgr.sequence()->eval<kp::OpTensorSyncLocal>({ tensorB });
    EXPECT_EQ(tensorA->vector(), tensorB->vector());
}

TEST(TestOpTensorCopy, SingleTensorShouldFail)
{

    kp::Manager mgr;

    std::vector<float> testVecA{ 6, 7, 8 };

    std::shared_ptr<kp::TensorT<float>> tensorA =
      mgr.tensor(testVecA, kp::Tensor::TensorTypes::eHost);

    EXPECT_TRUE(tensorA->isInit());

    EXPECT_THROW(mgr.sequence()->eval<kp::OpTensorCopy>({ tensorA }),
                 std::runtime_error);
}

TEST(TestOpTensorCopy, CopyThroughStorageTensor)
{
    kp::Manager mgr;

    std::vector<float> testVecIn{ 9, 1, 3 };
    std::vector<float> testVecOut{ 0, 0, 0 };

    std::shared_ptr<kp::TensorT<float>> tensorIn = mgr.tensor(testVecIn);
    std::shared_ptr<kp::TensorT<float>> tensorOut = mgr.tensor(testVecOut);
    // Tensor storage requires a vector to be passed only to reflect size
    std::shared_ptr<kp::TensorT<float>> tensorStorage =
        mgr.tensor({ 0, 0, 0 }, kp::Tensor::TensorTypes::eStorage);

    mgr.sequence()
        ->eval<kp::OpTensorSyncDevice>({ tensorIn, tensorOut })
        ->eval<kp::OpTensorCopy>({ tensorIn, tensorStorage })
        ->eval<kp::OpTensorCopy>({ tensorStorage, tensorOut })
        ->eval<kp::OpTensorSyncLocal>({ tensorIn, tensorOut });

    // Making sure the GPU holds the same vector
    EXPECT_EQ(tensorIn->vector(), tensorOut->vector());
}

TEST(TestOpTensorCopy, CopyTensorThroughStorageViaAlgorithms)
{
    kp::Manager mgr;

    std::vector<float> testVecIn{ 9, 1, 3 };
    std::vector<float> testVecOut{ 0, 0, 0 };

    std::shared_ptr<kp::TensorT<float>> tensorIn = mgr.tensor(testVecIn);
    std::shared_ptr<kp::TensorT<float>> tensorOut = mgr.tensor(testVecOut);
    // Tensor storage requires a vector to be passed only to reflect size
    std::shared_ptr<kp::TensorT<float>> tensorStorage =
        mgr.tensor({ 0, 0, 0 }, kp::Tensor::TensorTypes::eStorage);

    EXPECT_TRUE(tensorIn->isInit());
    EXPECT_TRUE(tensorOut->isInit());

    // Copy to storage tensor through algorithm
    std::string shaderA = (R"(
        #version 450

        layout (local_size_x = 1) in;

        // The input tensors bind index is relative to index in parameter passed
        layout(set = 0, binding = 0) buffer buf_in { float t_in[]; };
        layout(set = 0, binding = 1) buffer buf_st { float t_st[]; };

        void main() {
            uint index = gl_GlobalInvocationID.x;
            t_st[index] = t_in[index];
        }
    )");

    auto algoA = mgr.algorithm(
            { tensorIn, tensorStorage },
            compileSource(shaderA));

    // Copy from storage tensor to output tensor
    std::string shaderB = (R"(
        #version 450

        layout (local_size_x = 1) in;

        // The input tensors bind index is relative to index in parameter passed
        layout(set = 0, binding = 0) buffer buf_st { float t_st[]; };
        layout(set = 0, binding = 1) buffer buf_out { float t_out[]; };

        void main() {
            uint index = gl_GlobalInvocationID.x;
            t_out[index] = t_st[index];
        }
    )");

    auto algoB = mgr.algorithm(
            { tensorStorage, tensorOut },
            compileSource(shaderB));

    mgr.sequence()
        ->eval<kp::OpTensorSyncDevice>({ tensorIn })
        ->eval<kp::OpAlgoDispatch>(algoA)
        ->eval<kp::OpAlgoDispatch>(algoB)
        ->eval<kp::OpTensorSyncLocal>({ tensorOut });

    // Making sure the GPU holds the same vector
    EXPECT_EQ(tensorIn->vector(), tensorOut->vector());
}