Spaces:
Runtime error
Runtime error
// Various helper functions and utilities | |
// build info | |
extern int LLAMA_BUILD_NUMBER; | |
extern char const *LLAMA_COMMIT; | |
extern char const *LLAMA_COMPILER; | |
extern char const *LLAMA_BUILD_TARGET; | |
struct llama_control_vector_load_info; | |
int get_math_cpu_count(); | |
int32_t get_num_physical_cores(); | |
// | |
// CLI argument parsing | |
// | |
struct gpt_params { | |
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed | |
int32_t n_threads = get_math_cpu_count(); | |
int32_t n_threads_draft = -1; | |
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) | |
int32_t n_threads_batch_draft = -1; | |
int32_t n_predict = -1; // new tokens to predict | |
int32_t n_ctx = 512; // context size | |
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) | |
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) | |
int32_t n_keep = 0; // number of tokens to keep from initial prompt | |
int32_t n_draft = 5; // number of tokens to draft during speculative decoding | |
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) | |
int32_t n_parallel = 1; // number of parallel sequences to decode | |
int32_t n_sequences = 1; // number of sequences to decode | |
float p_split = 0.1f; // speculative decoding split probability | |
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) | |
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) | |
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs | |
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors | |
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs | |
int32_t n_beams = 0; // if non-zero then use beam search of given width. | |
int32_t grp_attn_n = 1; // group-attention factor | |
int32_t grp_attn_w = 512; // group-attention width | |
int32_t n_print = -1; // print token count every n tokens (-1 = disabled) | |
float rope_freq_base = 0.0f; // RoPE base frequency | |
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor | |
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor | |
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor | |
float yarn_beta_fast = 32.0f; // YaRN low correction dim | |
float yarn_beta_slow = 1.0f; // YaRN high correction dim | |
int32_t yarn_orig_ctx = 0; // YaRN original context length | |
float defrag_thold = -1.0f; // KV cache defragmentation threshold | |
ggml_backend_sched_eval_callback cb_eval = nullptr; | |
void * cb_eval_user_data = nullptr; | |
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; | |
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; | |
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings | |
// // sampling parameters | |
struct llama_sampling_params sparams; | |
std::string model = ""; // model path | |
std::string model_draft = ""; // draft model for speculative decoding | |
std::string model_alias = "unknown"; // model alias | |
std::string model_url = ""; // model url to download | |
std::string hf_repo = ""; // HF repo | |
std::string hf_file = ""; // HF file | |
std::string prompt = ""; | |
std::string prompt_file = ""; // store the external prompt file name | |
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state | |
std::string input_prefix = ""; // string to prefix user inputs with | |
std::string input_suffix = ""; // string to suffix user inputs with | |
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted | |
std::string logdir = ""; // directory in which to save YAML log files | |
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding | |
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding | |
std::string logits_file = ""; // file for saving *all* logits | |
std::vector<llama_model_kv_override> kv_overrides; | |
// TODO: avoid tuple, use struct | |
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale | |
std::string lora_base = ""; // base model path for the lora adapter | |
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale | |
int32_t control_vector_layer_start = -1; // layer range for control vector | |
int32_t control_vector_layer_end = -1; // layer range for control vector | |
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. | |
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line | |
// (which is more convenient to use for plotting) | |
// | |
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt | |
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score | |
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt | |
size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed | |
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt | |
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed | |
bool kl_divergence = false; // compute KL divergence | |
bool random_prompt = false; // do not randomize prompt if none provided | |
bool use_color = false; // use color to distinguish generations and inputs | |
bool interactive = false; // interactive mode | |
bool chatml = false; // chatml mode (used for models trained on chatml syntax) | |
bool prompt_cache_all = false; // save user input and generations to prompt cache | |
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it | |
bool embedding = false; // get only sentence embedding | |
bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\" | |
bool interactive_first = false; // wait for user input immediately | |
bool multiline_input = false; // reverse the usage of `\` | |
bool simple_io = false; // improves compatibility with subprocesses and limited consoles | |
bool cont_batching = true; // insert new sequences for decoding on-the-fly | |
bool flash_attn = false; // flash attention | |
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix | |
bool ignore_eos = false; // ignore generated EOS tokens | |
bool instruct = false; // instruction mode (used for Alpaca models) | |
bool logits_all = false; // return logits for all tokens in the batch | |
bool use_mmap = true; // use mmap for faster loads | |
bool use_mlock = false; // use mlock to keep model in memory | |
bool verbose_prompt = false; // print prompt tokens before generation | |
bool display_prompt = true; // print prompt before generation | |
bool infill = false; // use infill mode | |
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes | |
bool no_kv_offload = false; // disable KV offloading | |
bool warmup = true; // warmup run | |
bool check_tensors = false; // validate tensor data | |
std::string cache_type_k = "f16"; // KV cache data type for the K | |
std::string cache_type_v = "f16"; // KV cache data type for the V | |
// multimodal models (see examples/llava) | |
std::string mmproj = ""; // path to multimodal projector | |
std::vector<std::string> image; // path to image file(s) | |
}; | |
void gpt_params_handle_model_default(gpt_params & params); | |
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides); | |
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params); | |
bool gpt_params_parse(int argc, char ** argv, gpt_params & params); | |
void gpt_print_usage(int argc, char ** argv, const gpt_params & params); | |
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param); | |
std::string get_system_info(const gpt_params & params); | |
std::string gpt_random_prompt(std::mt19937 & rng); | |
void process_escapes(std::string& input); | |
bool validate_file_name(const std::string & filename); | |
// | |
// String utils | |
// | |
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names); | |
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string); | |
std::vector<std::string> string_split(std::string input, char separator); | |
std::string string_strip(const std::string & str); | |
std::string sampler_type_to_name_string(llama_sampler_type sampler_type); | |
// | |
// Model utils | |
// | |
// TODO: avoid tuplue, use struct | |
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params); | |
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params); | |
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); | |
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params); | |
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params); | |
// Batch utils | |
void llama_batch_clear(struct llama_batch & batch); | |
void llama_batch_add( | |
struct llama_batch & batch, | |
llama_token id, | |
llama_pos pos, | |
const std::vector<llama_seq_id> & seq_ids, | |
bool logits); | |
// | |
// Vocab utils | |
// | |
// tokenizes a string into a vector of tokens | |
// should work similar to Python's `tokenizer.encode` | |
std::vector<llama_token> llama_tokenize( | |
const struct llama_context * ctx, | |
const std::string & text, | |
bool add_special, | |
bool parse_special = false); | |
std::vector<llama_token> llama_tokenize( | |
const struct llama_model * model, | |
const std::string & text, | |
bool add_special, | |
bool parse_special = false); | |
// tokenizes a token into a piece, optionally renders special/control tokens | |
// should work similar to Python's `tokenizer.id_to_piece` | |
std::string llama_token_to_piece( | |
const struct llama_context * ctx, | |
llama_token token, | |
bool special = true); | |
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function | |
// that takes into account the tokenizer type and decides how to handle the leading space | |
// | |
// detokenizes a vector of tokens into a string | |
// should work similar to Python's `tokenizer.decode` | |
// removes the leading space from the first non-BOS token | |
std::string llama_detokenize_spm( | |
llama_context * ctx, | |
const std::vector<llama_token> & tokens); | |
// detokenizes a vector of tokens into a string | |
// should work similar to Python's `tokenizer.decode` | |
std::string llama_detokenize_bpe( | |
llama_context * ctx, | |
const std::vector<llama_token> & tokens); | |
// Uses the value from the model metadata if possible, otherwise | |
// defaults to true when model type is SPM, otherwise false. | |
bool llama_should_add_bos_token(const llama_model * model); | |
// | |
// YAML utils | |
// | |
bool create_directory_with_parents(const std::string & path); | |
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data); | |
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data); | |
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data); | |
std::string get_sortable_timestamp(); | |
void dump_non_result_info_yaml( | |
FILE * stream, const gpt_params & params, const llama_context * lctx, | |
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc); | |
// | |
// KV cache utils | |
// | |
// Dump the KV cache view with the number of sequences per cell. | |
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80); | |
// Dump the KV cache view showing individual sequences in each cell (long output). | |
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40); | |
// | |
// Embedding utils | |
// | |
void llama_embd_normalize(const float * inp, float * out, int n); | |
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n); | |
// | |
// Control vector utils | |
// | |
struct llama_control_vector_data { | |
int n_embd; | |
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd | |
std::vector<float> data; | |
}; | |
struct llama_control_vector_load_info { | |
float strength; | |
std::string fname; | |
}; | |
// Load control vectors, scale each by strength, and add them together. | |
// On error, returns {-1, empty} | |
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos); | |
// | |
// Split utils | |
// | |
static const char * const LLM_KV_SPLIT_NO = "split.no"; | |
static const char * const LLM_KV_SPLIT_COUNT = "split.count"; | |
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"; | |