Spaces:
Runtime error
Runtime error
// sampler types | |
enum class llama_sampler_type : char { | |
TOP_K = 'k', | |
TOP_P = 'p', | |
MIN_P = 'm', | |
TFS_Z = 'f', | |
TYPICAL_P = 'y', | |
TEMPERATURE = 't' | |
}; | |
// sampling parameters | |
typedef struct llama_sampling_params { | |
int32_t n_prev = 64; // number of previous tokens to remember | |
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. | |
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens | |
int32_t top_k = 40; // <= 0 to use vocab size | |
float top_p = 0.95f; // 1.0 = disabled | |
float min_p = 0.05f; // 0.0 = disabled | |
float tfs_z = 1.00f; // 1.0 = disabled | |
float typical_p = 1.00f; // 1.0 = disabled | |
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities | |
float dynatemp_range = 0.00f; // 0.0 = disabled | |
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler | |
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) | |
float penalty_repeat = 1.00f; // 1.0 = disabled | |
float penalty_freq = 0.00f; // 0.0 = disabled | |
float penalty_present = 0.00f; // 0.0 = disabled | |
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 | |
float mirostat_tau = 5.00f; // target entropy | |
float mirostat_eta = 0.10f; // learning rate | |
bool penalize_nl = false; // consider newlines as a repeatable token | |
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context | |
std::vector<llama_sampler_type> samplers_sequence = { | |
llama_sampler_type::TOP_K, | |
llama_sampler_type::TFS_Z, | |
llama_sampler_type::TYPICAL_P, | |
llama_sampler_type::TOP_P, | |
llama_sampler_type::MIN_P, | |
llama_sampler_type::TEMPERATURE | |
}; | |
std::string grammar; // optional BNF-like grammar to constrain sampling | |
// Classifier-Free Guidance | |
// https://arxiv.org/abs/2306.17806 | |
std::string cfg_negative_prompt; // string to help guidance | |
float cfg_scale = 1.f; // how strong is guidance | |
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens | |
std::vector<llama_token> penalty_prompt_tokens; | |
bool use_penalty_prompt_tokens = false; | |
} llama_sampling_params; | |
// general sampler context | |
// TODO: move to llama.h | |
struct llama_sampling_context { | |
// parameters that will be used for sampling | |
llama_sampling_params params; | |
// mirostat sampler state | |
float mirostat_mu; | |
llama_grammar * grammar; | |
// internal | |
grammar_parser::parse_state parsed_grammar; | |
// TODO: replace with ring-buffer | |
std::vector<llama_token> prev; | |
std::vector<llama_token_data> cur; | |
std::mt19937 rng; | |
}; | |
// Create a new sampling context instance. | |
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params); | |
void llama_sampling_free(struct llama_sampling_context * ctx); | |
// Reset the sampler context | |
// - clear prev tokens | |
// - reset grammar | |
void llama_sampling_reset(llama_sampling_context * ctx); | |
// Set the sampler seed | |
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed); | |
// Copy the sampler context | |
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst); | |
// Get the last sampled token | |
llama_token llama_sampling_last(llama_sampling_context * ctx); | |
// Get a string representation of the last sampled tokens | |
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n); | |
// Print sampling parameters into a string | |
std::string llama_sampling_print(const llama_sampling_params & params); | |
// Print sampling order into a string | |
std::string llama_sampling_order_print(const llama_sampling_params & params); | |
// this is a common sampling function used across the examples for convenience | |
// it can serve as a starting point for implementing your own sampling function | |
// Note: When using multiple sequences, it is the caller's responsibility to call | |
// llama_sampling_reset when a sequence ends | |
// | |
// required: | |
// - ctx_main: context to use for sampling | |
// - ctx_sampling: sampling-specific context | |
// | |
// optional: | |
// - ctx_cfg: context to use for classifier-free guidance | |
// - idx: sample from llama_get_logits_ith(ctx, idx) | |
// | |
// returns: | |
// - token: sampled token | |
// - candidates: vector of candidate tokens | |
// | |
llama_token llama_sampling_sample( | |
struct llama_sampling_context * ctx_sampling, | |
struct llama_context * ctx_main, | |
struct llama_context * ctx_cfg, | |
int idx = -1); | |
// Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters. | |
llama_token_data_array llama_sampling_prepare( | |
struct llama_sampling_context * ctx_sampling, | |
struct llama_context * ctx_main, | |
struct llama_context * ctx_cfg, | |
int idx = 0, | |
bool apply_grammar = true, | |
std::vector<float> * original_logits = nullptr); | |
void llama_sampling_accept( | |
struct llama_sampling_context * ctx_sampling, | |
struct llama_context * ctx_main, | |
llama_token id, | |
bool apply_grammar); | |