Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import multiprocessing | |
from typing import Optional, List, Literal, Union, Dict, cast | |
from typing_extensions import Self | |
from pydantic import Field, model_validator | |
from pydantic_settings import BaseSettings | |
import llama_cpp | |
# Disable warning for model and model_alias settings | |
BaseSettings.model_config["protected_namespaces"] = () | |
class ModelSettings(BaseSettings): | |
"""Model settings used to load a Llama model.""" | |
model: str = Field( | |
description="The path to the model to use for generating completions." | |
) | |
model_alias: Optional[str] = Field( | |
default=None, | |
description="The alias of the model to use for generating completions.", | |
) | |
# Model Params | |
n_gpu_layers: int = Field( | |
default=0, | |
ge=-1, | |
description="The number of layers to put on the GPU. The rest will be on the CPU. Set -1 to move all to GPU.", | |
) | |
split_mode: int = Field( | |
default=llama_cpp.LLAMA_SPLIT_MODE_LAYER, | |
description="The split mode to use.", | |
) | |
main_gpu: int = Field( | |
default=0, | |
ge=0, | |
description="Main GPU to use.", | |
) | |
tensor_split: Optional[List[float]] = Field( | |
default=None, | |
description="Split layers across multiple GPUs in proportion.", | |
) | |
vocab_only: bool = Field( | |
default=False, description="Whether to only return the vocabulary." | |
) | |
use_mmap: bool = Field( | |
default=llama_cpp.llama_supports_mmap(), | |
description="Use mmap.", | |
) | |
use_mlock: bool = Field( | |
default=llama_cpp.llama_supports_mlock(), | |
description="Use mlock.", | |
) | |
kv_overrides: Optional[List[str]] = Field( | |
default=None, | |
description="List of model kv overrides in the format key=type:value where type is one of (bool, int, float). Valid true values are (true, TRUE, 1), otherwise false.", | |
) | |
# Context Params | |
seed: int = Field( | |
default=llama_cpp.LLAMA_DEFAULT_SEED, description="Random seed. -1 for random." | |
) | |
n_ctx: int = Field(default=2048, ge=0, description="The context size.") | |
n_batch: int = Field( | |
default=512, ge=1, description="The batch size to use per eval." | |
) | |
n_threads: int = Field( | |
default=max(multiprocessing.cpu_count() // 2, 1), | |
ge=1, | |
description="The number of threads to use. Use -1 for max cpu threads", | |
) | |
n_threads_batch: int = Field( | |
default=max(multiprocessing.cpu_count(), 1), | |
ge=0, | |
description="The number of threads to use when batch processing. Use -1 for max cpu threads", | |
) | |
rope_scaling_type: int = Field( | |
default=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED | |
) | |
rope_freq_base: float = Field(default=0.0, description="RoPE base frequency") | |
rope_freq_scale: float = Field( | |
default=0.0, description="RoPE frequency scaling factor" | |
) | |
yarn_ext_factor: float = Field(default=-1.0) | |
yarn_attn_factor: float = Field(default=1.0) | |
yarn_beta_fast: float = Field(default=32.0) | |
yarn_beta_slow: float = Field(default=1.0) | |
yarn_orig_ctx: int = Field(default=0) | |
mul_mat_q: bool = Field( | |
default=True, description="if true, use experimental mul_mat_q kernels" | |
) | |
logits_all: bool = Field(default=True, description="Whether to return logits.") | |
embedding: bool = Field(default=True, description="Whether to use embeddings.") | |
offload_kqv: bool = Field( | |
default=True, description="Whether to offload kqv to the GPU." | |
) | |
flash_attn: bool = Field( | |
default=False, description="Whether to use flash attention." | |
) | |
# Sampling Params | |
last_n_tokens_size: int = Field( | |
default=64, | |
ge=0, | |
description="Last n tokens to keep for repeat penalty calculation.", | |
) | |
# LoRA Params | |
lora_base: Optional[str] = Field( | |
default=None, | |
description="Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.", | |
) | |
lora_path: Optional[str] = Field( | |
default=None, | |
description="Path to a LoRA file to apply to the model.", | |
) | |
# Backend Params | |
numa: Union[bool, int] = Field( | |
default=False, | |
description="Enable NUMA support.", | |
) | |
# Chat Format Params | |
chat_format: Optional[str] = Field( | |
default=None, | |
description="Chat format to use.", | |
) | |
clip_model_path: Optional[str] = Field( | |
default=None, | |
description="Path to a CLIP model to use for multi-modal chat completion.", | |
) | |
# Cache Params | |
cache: bool = Field( | |
default=False, | |
description="Use a cache to reduce processing times for evaluated prompts.", | |
) | |
cache_type: Literal["ram", "disk"] = Field( | |
default="ram", | |
description="The type of cache to use. Only used if cache is True.", | |
) | |
cache_size: int = Field( | |
default=2 << 30, | |
description="The size of the cache in bytes. Only used if cache is True.", | |
) | |
# Tokenizer Options | |
hf_tokenizer_config_path: Optional[str] = Field( | |
default=None, | |
description="The path to a HuggingFace tokenizer_config.json file.", | |
) | |
hf_pretrained_model_name_or_path: Optional[str] = Field( | |
default=None, | |
description="The model name or path to a pretrained HuggingFace tokenizer model. Same as you would pass to AutoTokenizer.from_pretrained().", | |
) | |
# Loading from HuggingFace Model Hub | |
hf_model_repo_id: Optional[str] = Field( | |
default=None, | |
description="The model repo id to use for the HuggingFace tokenizer model.", | |
) | |
# Speculative Decoding | |
draft_model: Optional[str] = Field( | |
default=None, | |
description="Method to use for speculative decoding. One of (prompt-lookup-decoding).", | |
) | |
draft_model_num_pred_tokens: int = Field( | |
default=10, | |
description="Number of tokens to predict using the draft model.", | |
) | |
# KV Cache Quantization | |
type_k: Optional[int] = Field( | |
default=None, | |
description="Type of the key cache quantization.", | |
) | |
type_v: Optional[int] = Field( | |
default=None, | |
description="Type of the value cache quantization.", | |
) | |
# Misc | |
verbose: bool = Field( | |
default=True, description="Whether to print debug information." | |
) | |
# pre=True to ensure this runs before any other validation | |
def set_dynamic_defaults(self) -> Self: | |
# If n_threads or n_threads_batch is -1, set it to multiprocessing.cpu_count() | |
cpu_count = multiprocessing.cpu_count() | |
values = cast(Dict[str, int], self) | |
if values.get('n_threads', 0) == -1: | |
values['n_threads'] = cpu_count | |
if values.get('n_threads_batch', 0) == -1: | |
values['n_threads_batch'] = cpu_count | |
return self | |
class ServerSettings(BaseSettings): | |
"""Server settings used to configure the FastAPI and Uvicorn server.""" | |
# Uvicorn Settings | |
host: str = Field(default="localhost", description="Listen address") | |
port: int = Field(default=8000, description="Listen port") | |
ssl_keyfile: Optional[str] = Field( | |
default=None, description="SSL key file for HTTPS" | |
) | |
ssl_certfile: Optional[str] = Field( | |
default=None, description="SSL certificate file for HTTPS" | |
) | |
# FastAPI Settings | |
api_key: Optional[str] = Field( | |
default=None, | |
description="API key for authentication. If set all requests need to be authenticated.", | |
) | |
interrupt_requests: bool = Field( | |
default=True, | |
description="Whether to interrupt requests when a new request is received.", | |
) | |
disable_ping_events: bool = Field( | |
default=False, | |
description="Disable EventSource pings (may be needed for some clients).", | |
) | |
class Settings(ServerSettings, ModelSettings): | |
pass | |
class ConfigFileSettings(ServerSettings): | |
"""Configuration file format settings.""" | |
models: List[ModelSettings] = Field(default=[], description="Model configs") | |